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Weighted graphs with presumed cluster structure are challenging to many existing graph drawing meth- 

ods, even though ways of visualizing such graphs would be much needed in complex networks research. 

In the field of dimension reduction, t-distibuted stochastic neighbor embedding (t-SNE) has proven suc- 

cessful in visualizing clustered data. Here, we extend t-SNE into graph-SNE (GSNE). Our method builds on 

the sensitivity of random walks to cluster structure in graphs. We use random walks to define a neigh- 

borhood probability that realizes the properties behind the success of t-SNE in visualizing clustered data 

sets: Gaussian-like behavior of neighborhood probabilities, adaptation to local edge density, and an ad- 

justable granularity scale. We show that GSNE correctly visualizes artificial graphs where ground-truth 

cluster structure is known. Using real-world networks, we show that GSNE is able to produce meaningful 

visualizations that display plausible cluster structure which is not captured by state-of-the-art visualiza- 

tion methods. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Modern graph drawing methods allow successful visualization 

of meshes of millions of nodes, almost any kinds of trees, and to a 

certain extent, large real-world complex networks. The latter come 

with a bewildering range of inhomogeneities, from broad distri- 

butions of node degrees to diverse structural patterns involving 

groups of nodes, such as cluster structure (also called community 

structure [1] ). Especially cluster structure is important for a num- 

ber of reasons. It often reflects the functional organization of the 

network, with different clusters having different functional roles. 

As a result, clusters represent network organization at a coarse 

level. It is known to have strong effects on dynamical processes 

taking place on networks [1] . Because of the importance of this 

structure, there are numerous methods for detecting and charac- 

terizing clusters (see, e.g. [1] for a review, and [2] for a comparison 

against benchmarks). However, there is a lack of methods for visu- 

alizing large networks with cluster structure. Such methods would 

be very useful e.g. in data exploration before applying cluster de- 

tection methods, whose runtimes are typically long and whose pa- 

rameters may require adjustment to the problem at hand. 

Neighborhood-based dimension reduction methods have been 

highly successful in visualizing clustered vector data. A notable ex- 

ample is t-SNE, t-distributed stochastic neighbor embedding [3] , 

which followed the older SNE [4] . T-SNE emphasizes local over 
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global, which helps clusters stand out. Neighborhood sizes are ad- 

justed to local density, so that both sparse and dense regions be- 

come well visible. A scale parameter enables work on data sets 

which have interesting structure on several length scales. In this 

paper, we define a pairwise similarity that realizes these same 

desirable properties for graphs, and apply the resulting method, 

graph-SNE (GSNE), to many different visualization tasks. Unlike re- 

lated similarities, the density-adaptive similarity of GSNE makes 

the internal structure of clusters visible while retaining a good 

overall view of the graph. GSNE shows ground-truth clusters of 

benchmark graphs better than the comparison methods (although 

in some cases the differences are subtle), and performs on par with 

or better than competitors on real-life networks of different sizes. 

Section 2 gives background on earlier work on related topics. 

Definition of graph-SNE is presented in Section 3 , followed by vi- 

sualization experiments in Section 4 . We discuss some limitations 

and finish with conclusions in Section 5 . 

2. Earlier work 

In this section, we summarize some main lines of graph draw- 

ing and use of random walks for characterizing node similar- 

ity, and introduce the dimension reduction method t-SNE that 

our work builds on. Detailed reviews and comparisons are avail- 

able elsewhere on graph drawing in general [5] , on drawing large 

graphs [6–8] , and on the relationship of graphs to random walks 

[9,10] . Readers wishing more background on dimension reduction 

are referred to [11] . 
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2.1. Graph drawing 

Early graph drawing methods emphasized the aesthetic charac- 

ter of visualization. Aesthetic criteria, such as uniform spread of 

nodes, uniform lengths of edges, and minimal edge crossings, can 

be explicitly encoded into cost functions [12] . Force-based methods 

[13,14] tend to produce aesthetically pleasing drawings of small 

graphs, although aesthetics is not explicitly considered. Methods 

based on eigendecomposition of graph Laplacians [15,16] have an 

aesthetic interpretation: they place each node in the barycenter 

of its neighbors. These classical methods have served as building 

blocks for more recent methods for large graphs [17,18] . 

The ever-increasing sizes of graphs to be visualized have all but 

outdated some aesthetic criteria, resulting in a need to emphasize 

interpretability [19] alongside aesthetic goals. The earliest methods 

with a clear interpretation were those that preserve shortest-path 

distances [20,21] , and the idea has been rehashed for larger graphs 

[22,23] . On a more modern note, the LinLog family of energy func- 

tions [19,24] is designed to produce drawings with interpretable 

clusters. 

2.2. Similarity metrics on random walks 

Path-based measures are known to emphasize clusters in draw- 

ings [25] – two nodes are considered similar if there are many 

paths connecting them. Random walks naturally capture the net 

effect of multiple paths, and they have been used in many dis- 

tance/similarity metrics as well as methods for detecting clusters 

in graphs [26,27] . The commute time distance — the average time 

it takes to travel from node r to node c and back — has been used 

for clustering [28] and for graph embeddings [29] . The same dis- 

tance is motivated by interpreting the graph as an electrical circuit, 

where the edge weights represent conductances. The total resis- 

tance between two nodes is then known as the resistance distance 

[30] or linear network distance [25] . In the context of t-SNE, ran- 

dom walks have been used to obtain a reduced data set which can 

be said to capture the structure of the whole data set [3] . 

2.3. Dimension reduction with t-SNE 

T-SNE [3] tries to match the probability of nodes r and c being 

neighbors in the drawing ( q rc ) to their probability of being neigh- 

bors in the data ( p rc , Euclidean distance of points r and c modified 

by a Gaussian centered at point r , normalized over all neighbors). 

We will define p rc for GSNE in Section 3 . The q rc are defined with 

normalized Student-t-kernels as 

t rc = (1 + ‖ y r − y c ‖ 

2 ) −1 , t rr = 0 , (1) 

q rc = 

t rc ∑ 

i, j∈ V t i j 

, (2) 

where V is the set of nodes, y i are the coordinates of nodes in the 

drawing, and ‖ ���‖ is the Euclidean distance. y i are found by min- 

imizing (to a local optimum) the Kullback–Leibler divergence 

D KL (p | q ) = 

∑ 

r, c 

p rc log 
p rc 

q rc 
. 

2.4. Sparse t-SNE for large graphs 

Both time and memory requirements of t-SNE scale quadrati- 

cally with | V |, so for large graphs we need an approximation. 

Sparse SNE [31] was developed for vector data, but uses a graph 

as its internal representation, so it is straightforward to modify it 

for graphs. Other large-scale t-SNE variants have been created with 

tree-codes [32,33] . The random-walk similarity of GSNE could be 

used with the tree-code methods or even with the exact t-SNE. 

For a comparison between tree-code and graph-based techniques 

(for vector data) see [31] . 

Minimization of the Kullback–Leibler divergence via its gradient 

leads to a system of attractive and repulsive forces [33] 

∂C SNE 

∂y r 
= A r − R r , (3) 

A r = 4 

∑ 

c∈ V 
p rc t rc (y r − y c ) , (4) 

R r = 4 

∑ 

c∈ V 
q rc t rc (y r − y c ) . (5) 

Sparse SNE replaces the full system of forces with a smaller num- 

ber of weighted forces [31] . Two approximations are made when 

evaluating the gradient (3) . The attractive forces 4 are evaluated 

exactly, but only for a small set L of node pairs 

A r ≈ 4 

∑ 

c s.t. 
(r,c) ∈L 

p rc t rc (y r − y c ) . (6) 

The pairs include but are not limited to edges of the graph. L is 

determined with help of a random walk, and will be defined in 

Section 3.5 . 

The repulsive forces are exact for node pairs in L . Another, uni- 

formly randomly sampled set G is used to approximate the rest of 

the repulsions. This leads to replacing (5) with 

R r ≈ 4 

˜ z 

∑ 

c s.t. 
(r,c) ∈L 

t 2 rc (y r − y c ) + 

4 

˜ z 

∑ 

c s.t. 
(r,c) ∈G 

[
bI rc + t 2 rc 

]
(y r − y c ) . (7) 

The term bI rc results from associating each node pair of G with 

an area-to-point interaction, to be used instead of several point- 

to-point interactions. I rc is the expected force, which a point from 

inside a y c -centered sphere exerts on the point y r . The expecta- 

tion is weighted by an estimated number b = (| V | − L − 1) /G − 1 

of all points which the sphere represents. Here, L and G are the 

numbers of L - and G-linked neighbors per one node. The normal- 

ization factor ˜ z ≈ ∑ 

i, j∈ V t i j is approximated with the same idea as 

the gradient. Formulas for b, I rc and ˜ z are derived in detail in [31] . 

3. Graph-SNE (GSNE) 

To make t-SNE work for graphs, we need the neighborhood 

probabilities p rc , and the node sets L and G. The probability of 

node c being a neighbor of node r is defined as the probability 

of being in node c after taking s r random walk steps from node 

r . This idea resembles commute times [29] , but avoids the costly 

eigendecomposition needed therein. 

We work on undirected, weighted graphs with no self-loops 

(unweighted graphs can simply be considered as a special case 

of weighted graphs where all edges have unit weights). The edge 

weights w rc must be interpretable as similarities : they are nonneg- 

ative, and the smaller the value, the weaker the relationship be- 

tween nodes. We scale edge weights to transition probabilities of 

a Markov chain, collected into a transition matrix M . With v i a col- 

umn vector with a 1 in position i and zeros elsewhere, the proba- 

bility of ending up in c from r with s r steps is v T r M 

s r v c . Since the 

drawing algorithm needs symmetric probabilities, we must con- 

sider both directions, 

p rc = 

(
v T r M 

s r v c + v T c M 

s c v r 
)
/ 2 . (8) 
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