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a b s t r a c t

This paper proposes the concept of general relation decision systems and studies attribute reduction algo-

rithms for relation decision systems, which are generalization of decision tables. In our relation decision

systems, both condition and decision attribute sets consist of general binary relations. Novel attribute re-

duction algorithms for consistent and inconsistent relation decision systems are derived, respectively. A data

set from the UCI machine learning databases is used in the empirical study, the experimental results verify

the effectiveness of the proposed algorithms. The results unify the earlier attribute reduction algorithms for

decision tables.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Attribute reduction, originally proposed by Pawlak [12,13], is a

powerful data processing technique. It plays an important role in ma-

chine learning, artificial intelligence, pattern recognition [10,27] and

other fields. Reduction process removes superfluous attributes from

information systems while preserving the consistency of classifica-

tions. Many works [1,5,6,9,11,13,16,25,33] have been done on attribute

reduction in information systems and many attribute reduction al-

gorithms have been developed. To speed up attribute reduction cal-

culations, Qian et al. [15] proposed several parallel attribute reduc-

tion algorithms for large data using MapReduce. In addition, as we

know, feature selection has become the focus of machine learning,

since rough set theory is a tool to discover data dependencies and

to reduce the number of attributes contained in a dataset using the

data alone, requiring no additional information [13], it has been used

as a feature selection approach with much success. That is, rough set

theory provides an important feature selection approach in machine

learning.

In the past, attribute reduction algorithms were proposed on ap-

proximate spaces induced by equivalence relations and complete in-

formation systems. Kryszkiewicz [7] investigated and compared five

notions of attribute reduction in inconsistent systems based on equiv-

alence relations. In recent years, more attentions have been paid

to incomplete information systems [2,4,19,22–24,26,28–31,34]. Note

that almost all attribute reduction algorithms need to calculate dis-

cernibility matrices [14,20], in fact, they play an important role in
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reduction processes. Skowron and Rauszer [20,21] first proposed to

represent knowledge in the form of discernibility matrices. Their rep-

resentation enables simple computation of reduction in information

systems. Now the concept of discernibility matrix is extended by sev-

eral authors [30,35], many types of reduction algorithms for incon-

sistent information systems have been proposed [7,17,18,32] based

on discernibility matrices. For example, Wang et al. [30] provided

a systematic study on attribute reduction with generalized rough

sets [8,12]. Moreover, they gave many effective reduction algorithms.

However, in their definition of relation decision systems, decision at-

tribute set consists of equivalence relations. Clearly, the definition is

restrictive since in practice, the values of decision attributes may be

missing and breaking the equivalence relation.

In this paper, we propose different definitions of relation decision

systems. In our definition, we do not require a decision attribute set

consisting of equivalence relations. Moreover, we present novel at-

tribute reduction algorithms for consistent and inconsistent relation

decision systems, respectively. As corollaries of our algorithms, we

obtain attribute reduction algorithms for decision tables. Our algo-

rithms unify earlier reduction algorithms for decision tables.

As we know, the main obstacle in calculation reducts is the com-

putational complexity. The calculation processes of transforming the

conjunctive normal form(CNF) into the disjunctive normal form(DNF)

and finding a minimum set implicants are usually time-consuming.

Fortunately, Borowik and Luba [3] proposed an exact algorithm for

this problem which is based on the unate complementation task. At-

tribute reduction calculation can be speeded up by application of our

method in combination with the new exact algorithm.

The remainder of the paper is organized as follows. In Section 2,

we review some basic notions of relation decision systems. In

Section 3, we discuss the attribute reduction problem for consis-

tent relation decision systems, and a simple and efficient reduction
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Table 1

An incomplete decision table.

U a1 a2 a3 d

u1 3 1 3 0

u2 {1,2} 2 1 ∗
u3 1 ∗ 2 1

u4 2 1 2 0

algorithm is given. Section 4 presents an attribute reduction for in-

consistent relation decision systems. As a special case of Section 4,

Section 5 proposes a very simple algorithm to compute the reduction

for inconsistent decision tables. In order to verify the effectiveness

of our proposed algorithms, Section 6 designs an experimental pro-

cess to verify our theoretical results. Finally, Section 7 concludes the

paper.

2. Preliminaries

In this section, we recall some basic definitions and proper-

ties of binary relations and relation decision systems. Let U =
{u1, u2, . . . , un} be a finite set of objects called the universal set and

P(U) be the power set of U. Suppose that R is an arbitrary relation on

U, then the pair, (U, R), is referred to as a generalized approximation

space. Recall that the left and right R-relative sets of an element x in

U are defined as

lR(u) = {v|v ∈ U, vRu} and rR(u) = {v|v ∈ U, uRv},
respectively. With a binary relation R on U, for each X⊆U, R(X) =
{x|rR(x) ⊆ X} and R(X) = {x|rR(x) ∩ X �= ∅} are called the lower and

upper approximations of X, respectively.

As we know, a knowledge base [13] is a relation system (U, R),

where U is universal set, and R is a family of equivalence relations

on U. Now we introduce the concept of general relation decision

systems.

Definition 2.1. Let U be a universal set. Suppose that C =
{R1, R2, . . . , Rm} and D = {d1, d2, . . . , dt} are two families of arbitrary

binary relations on U. Then (U, C ∪ D) is called a relation decision sys-

tem, C is called a condition attribute set, and D is called the decision

attribute set. If RC = ∩m
i=1

Ri ⊆ RD = ∩t
i=1

di, then (U, C ∪ D) is called

consistent; otherwise, (U, C ∪ D) is called inconsistent, where the sign

∩ is the intersection operation of binary relations.

For a relation decision system (U, C ∪ D), set PosC(D) = {x|x ∈
U, rRC

(x) ⊆ rRD
(x)} is called the C-positive region of D.

Note that Wang et al. defined the concept of relation decision sys-

tems in [30]. However, their definition is different from Definition 2.1.

Clearly, RC = ∩m
i=1

Ri ⊆ RD = ∩t
i=1

di is equivalent to rRC
(u) ⊆ rRD

(u) or

lRC
(u) ⊆ lRD

(u) for all u ∈ U.

Relation decision systems are a generalization of decision tables,

since, if both C and D are families of equivalence relations, then a re-

lation decision system (U, C ∪ D) is just a usual decision table. In this

case, a consistent relation decision system is just a consistent decision

table.

Example 2.1. The following incomplete decision table induces a re-

lation decision system.

In Table 1, ∗ denotes missing attribute value, {1, 2} means the at-

tribute value equals to 1 or 2. Attribute R is considered as a binary

relation via:

uiRuj ⇔ R(ui) = R(uj) or R(ui) = ∗ or R(uj) = ∗.

Let U = {u1, u2, u3, u4}, C = {a1, a2, a3} and D = {d}, then (U, C ∪ D) is

a relation decision system. Moreover, it is easy to verify that (U, C ∪ D)

is consistent.

Let (U, C ∪ D) be a relation decision system. Similar to the depen-

dency of knowledge [13], formally, the dependency can be defined as

follows.

Definition 2.2. Let (U, C ∪ D) be a relation decision system.

(1) D depends on C, denoted by C⇒D, if and only if ∩m
i=1

Ri ⊆ ∩t
i=1

di.

(2) C and D are equivalent, denoted by C ≡ D, if and only if C⇒D

and D⇒C.

(3) C and D are independent if and only if neither C⇒D nor D⇒C

holds.

A relation decision system has the following properties.

Proposition 2.1. Suppose that (U, C ∪ D) is a relation decision system.

(1) (U, C ∪ D) is consistent if and only if PosC(D) = U.

(2) Let V = PosC(D), then (V, C|V ∪ D|V) is consistent, where C|V is the

restriction of C to V.

(3) If B⊆C, then RC⊆RB and PosB(D)⊆PosC(D).

Proof.

(1) (U, C ∪ D) is consistent if and only if RC⊆RD, if and only if

rRC
(u) ⊆ rRD

(u) for each u ∈ U, if and only if PosC(D) = U .

(2) (V, C|V ∪ D|V) is consistent because of {u|u ∈ V, rRC
(u) ⊆

rRD
(u)} = V .

(3) Since RC = ∩R∈CR ⊆ ∩R∈BR = RB, we have RC⊆RB. Suppose u

∈ PosB(D), then rRB
(u) ⊆ rRD

(u). rRC
(u) ⊆ rRB

(u) because of

RC⊆RB, thus PosB(D)⊆PosC(D). �

For the sake of simplicity, we always assume D = {d} in the sequel

and RD = Rd .

3. Reductions of consistent relation decision systems

In this section, we will give a reduction algorithm for consistent

relation decision systems. As a special case, a simple reduction algo-

rithm for consistent decision tables is obtained. We now introduce

the definition of reductions.

Definition 3.1. Let (U, C ∪ D) be a consistent relation decision system

and ∅ �= B⊆C. If (U, B ∪ D) is still consistent and for any subset, B′ ⊂ B,

(U, B′ ∪ D) is not consistent, we say that B is a reduction of attribute

set C.

For a consistent relation decision system (U, C ∪ D), the reduction B

is the minimal subset of attributes C that keeps (U, B ∪ D) consistent. If

C and D are families of equivalence relations, then a relation decision

system, (U, C ∪ D), is the usual decision table [13]. For decision tables,

many reduction algorithms have been given. Now we give a reduction

algorithm for a general relation decision system, (U, C ∪ D).

Suppose that (U, C ∪ D) is a consistent relation decision system,

U = {u1, u2, . . . , un}, C = {R1, R2, . . . , Rm}, and D = {d}. Consider the

discernibility matrix, (Dij)n × n, and

Di j =
{

C, (ui, uj) ∈ RD

{Rl|(ui, uj) /∈ Rl}, (ui, uj) /∈ RD
.

We need a technical lemma.

Lemma 3.1. Let U = {u1, u2, . . . , un} and (U, C ∪ D) be a consistent re-

lation decision system. Then Dij �= ∅ for 1 ≤ i, j ≤ n.

Proof. Suppose that Di j = ∅ for ui, uj ∈ U. By the definition of Dij, if

(ui, uj) �∈ RD, then (ui, uj) ∈ RC, this contradicts to RC⊆RD. �

Theorem 3.1. Let (U, C ∪ D) be a consistent relation decision system,

U = {u1, u2, . . . , un}, B⊆C, and B �= ∅. Then (U, B ∪ D) is consistent if and

only if B ∩ Dij �= ∅.

Proof. Suppose that (U, B ∪ D) is consistent. If (ui, uj) ∈ RD, then B ∩
Di j = B ∩ C = B �= ∅. If (ui, uj) �∈ RD, then u j /∈ rRD

(ui). Since (U, B ∪ D) is
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