
Integration, the VLSI Journal xxx (2018) 1–10

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

Accelerating cycle-accurate system-level simulations through behavioral
templates

Anushree Mahapatra a, Yidi Liu a, Benjamin Carrion Schafer b,*

a Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong
b Department of Electrical and Computer Engineering, The University of Texas at Dallas, USA

A R T I C L E I N F O

Keywords:
Heterogeneous SoCs
Hardware accelerators
High-level synthesis
Templates
Acceleration
Simulation

A B S T R A C T

This work presents a method to accelerate the running time of cycle-accurate system-level simulations. The
proposed method substitutes the computational units specified at the RT-level or behavioral level in the system
with fast templates of the exact latency of its original design and thus, preserving the performance measurement
accuracy. The method has been extended to deal with control dependencies inside loops in order to maintain
high modelling accuracies under any condition. Experimental results show that our proposed method works
well speeding up individual accelerator kernels by up to 8 and 15×. Moreover when used to explore entire SoC
configurations it achieves similar result as using the exact models while achieving an average speedup of 4.7×.

1. Introduction

VLSI circuits are reaching complexities never seen before.
Most circuits are now heterogeneous Multi-Processor System-on-
Chips (MPSoCs), which typically include embedded micro-processors,
memory controllers, memories and dedicated hardware accelerators
(HWAccs), all interconnected through a single bus or bus-hierarchies.

The Problem that arises while designing these complex Integrated
Circuits (ICs) for the system designer is to determine the overall system
architecture. For this purpose, they tend to use fast transaction level
models (TLM) based on high-level languages such as SystemC, which
allows to model concurrent processes. Once the overall system structure
has been fixed, the model needs to be refined by using more accurate
models, typically cycle-accurate. These models allow to fine-tune the
system’s performance by e.g. matching the Data Initiation Interval (DII)
of certain dedicated hardware accelerators (HWaccs) with the memo-
ries’ DII and/or the bus bandwidth.

This is particularly important when using C-based VLSI design as
High-Level Synthesis (HLS) has one additional advantage over tradi-
tional RT-level VLSI design: The ability to generate multiple micro-
architecture with unique area and performance trade-offs from the same
behavioral description. This implies that a trade-off curve of Pareto-
optimal designs can be generated from a given behavioral description.
The Problem for the system designer is to determine which micro-
architecture to use to meet a given set of constraints (e.g. area, per-

* Corresponding author.
E-mail addresses: anushree.mahapatra@connect.polyu.hk (A. Mahapatra), dylan@connect.polyu.hk (Y. Liu), schaferb@utdallas.edu (B. Carrion Schafer).

formance and power). Fig. 1 shows an example of the choices that
the system designer faces when especially using C-based VLSI design.
The SoC depicted contains one master, and four hardware accelerators
which compute dedicated tasks. Three of these accelerators are speci-
fied in C and thus, given as behavioral IPs (BIPs) and one in RTL, where
HWacc1,HWacc2 and HWacc3, are loosely coupled accelerators (any
master in the SoC can access them), while HWacc4, is a tightly coupled
accelerator that only Master1 can access. As shown, for each BIP a trade-
off curve of Pareto-optimal designs is generated (not for the RTL IP as
the micro-architecture is fixed). The system designer thus, needs cycle-
accurate timing information to determine which micro-architecture to
choose for each accelerator, the bus type, arbitration policy and bus
bandwidth in order to study their impact on area, performance and
power of the complete system. This can only be done with detailed
cycle-accurate models, but for large systems this can prove inviable or
take extremely long runtimes. Thus, new methods to speed-up these
cycle-accurate simulations are needed. The main contributions of this
work can be summarized as follows:

• Introduce the concept of behavioral template to accelerate cycle-
accurate simulations by abstracting away the functionality of ded-
icated hardware accelerators, while maintaining their timing accu-
racy.

• Propose different types of templates based on the internal structure
of the accelerator, by investigating data dependencies in order to
increase the accuracy of the simulations.

https://doi.org/10.1016/j.vlsi.2018.03.014
Received 24 April 2017; Received in revised form 20 November 2017; Accepted 18 March 2018
Available online XXX
0167-9260/© 2018 Elsevier B.V. All rights reserved.

Please cite this article in press as: A. Mahapatra, et al., Accelerating cycle-accurate system-level simulations through behavioral templates,
Integration, the VLSI Journal (2018), https://doi.org/10.1016/j.vlsi.2018.03.014

https://doi.org/10.1016/j.vlsi.2018.03.014
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/vlsi
mailto:anushree.mahapatra@connect.polyu.hk
mailto:dylan@connect.polyu.hk
mailto:schaferb@utdallas.edu
https://doi.org/10.1016/j.vlsi.2018.03.014


A. Mahapatra et al. Integration, the VLSI Journal xxx (2018) 1–10

Fig. 1. Heterogenous SoC overview with multiple micro-architectures for each behavioral
hardware accelerator.

• Extend a previously developed method to abstract RTL IPs with data
dependencies having different execution latencies, into fast behav-
ioral templates proposed in this work.

2. Motivational example

One of the problems when exploring complex SoCs, is that although
a behavioral-level (e.g. SystemC) cycle-accurate simulation is faster
than an RT-level simulation, it is still often too slow, especially when
dealing with very large systems. For this purpose, this work intro-
duces the concept of Behavioral IP (BIP) templates to substitute the
HWaccs mapped as slaves in the system.1 The idea behind these tem-
plates is to substitute each HWacc (either specified as a RTL IP or
behavioral IP) with a template which mimics the IPs’ IOs behavior,
but is empty inside. This implies that it only reads data from the
module it is connected to (i.e. a master when mapped as a slave in
an SoC) and returns data after X cycles similar to the original IP,
where X is the latency of the IP. Although the results returned are
functionally incorrect, the timing behavior is preserved. This implies
that the system only works if control dependencies within different
components in the system do not impact the execution order. Typi-
cally, this is the case as these accelerators often perform data intensive
applications like image processing or digital signal processing func-
tions. Examples where this work will either not work or loose accu-
racy are e.g. in medical diagnostic systems, where certain features
need to be extracted from the image to be further analyzed, or some
scientific applications, e.g. accelerating particle assembly simulations
where the coordinates of each particle is updated every simulation
cycle and is required in subsequent cycles to compute the inter-particle
forces.

This strategy has several key advantages: Firstly, the workload pat-
tern of the entire system is preserved (considering that the master is not
using the returned data for control actions). Secondly, the compile time
of the entire model is accelerated, as the complexity of these behavioral

1 This work makes indistinguishable use of the terms hardware accelerator (HWacc),
IP, kernel or slave, for a design module in an SoC that accelerates the computation of a
dedicated task.

Fig. 2. Accumulator example with data dependent loop execution example.

templates (BT) is much lower than that of the actual IPs (it should be
noted that for larger circuits the compilation time can be significant).
Thirdly, the cycle-accurate simulation is much faster as each template
does not require to perform any actual computation. Lastly, it allows
the exploration of configuration of any latencies, hence it is very easy
to generate different what-if scenarios.

The main Problem is that many IPs often have variable execution
latency. Fig. 2a shows an example of an accumulator, which computes
the sum (accum) of data stored in in array and stops if all the data
has been added or a maximum value is reached. In this case, if accum
reaches a maximum saturation value MAX. The latency of the synthe-
sized design is therefore data dependent. In the worst case, the loop is
iterated N times, while in the best case, it only executes the loop a single
time, i.e, L = [1,N]. If this IP is substituted by a behavioral template,
in order to maintain the accuracy, the data dependent (DD) constructs
that affect the latency need to be preserved.

As described in detail later, if a DD operation is found, the method
builds an abstract syntax tree (AST) shown in Fig. 2b and keeps all the
code required to resolve this data dependency. In the case of Fig. 2b all
the code is kept in the same tree branch (in the enclosed box). In the
worst case, this could imply that the BIP can not be abstracted away
and thus the BT would be exactly the same as the BIP. The Problem can
be formally defined as:

Problem Definition: Given N computationally intensive kernels
K1,K2,… ,KN to be mapped onto an SoC as hardware accelerators
(HWaccs), find an exact cycle-accurate Behavioral Template (BT) for
each kernel K1 ← BT1,K2 ← BT2,… ,KN ← BTN , such that the running

2



Download English Version:

https://daneshyari.com/en/article/6942183

Download Persian Version:

https://daneshyari.com/article/6942183

Daneshyari.com

https://daneshyari.com/en/article/6942183
https://daneshyari.com/article/6942183
https://daneshyari.com

	tooltip zref@0: 
	tooltip zref@1: 
	tooltip zref@5: 
	tooltip zref@8: 


