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Abstract Two new approximate formulations to joint chance-constrained optimization problems are proposed in this paper. The
relationships of CVaR (conditional-value-at-risk), chance constrains and robust optimization are reviewed. Firstly, two new upper
bounds on E((·) +) are proposed, where E stands for the expectation and x+ =max(0, x), based on which two approximate formu-
lations for individual chance-constrained problems are derived. The approximations are proved to be the robust optimization with
the corresponding uncertain sets. Then the approximations are extrapolated to joint chance-constrained problem. Finally numerical
studies are performed to compare the solutions of individual and joint chance constraints approximations and the results demonstrate
the validity of our method.
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Data uncertainty is very common in real-world optimiza-
tion problems. For convenience, we usually use the “nom-
inal value” in the model to search the optimal solution.
However, ignoring the data uncertainty may lead to the
obtained solution to be suboptimal or even infeasible for
practical applications.

There are many methods to deal with optimization prob-
lems with uncertain data. Chance-constrained optimiza-
tion seems to be the most natural one to restrict the
violation probability, which was introduced by Charnes
et al.[1]. Usually, the uncertain parameters in the opti-
mization model are assumed to be independent, and we
deal with the uncertain constraints separately. Calasfoire
and Ghaoui[2] demonstrated that the individual chance-
constrained problem is a second order cone constraint prob-
lem which is computationally tractable if the uncertain pa-
rameters are of radial distributions. But for most of the
other distributions, chance-constrained problems are com-
putationally intractable. If uncertain data are related and
then constraints cannot be treated individually, the opti-
mization problems become more difficult to handle with.
In fact, Prekopa proved that, with only right hand side
disturbances, a joint chance-constrained problem is convex
only when the distributions are log-concave[3]. Difficulties
in acquiring the distribution information and computation
spurred researchers to find other effective methods.

Robust optimization is another important way to deal
with the uncertain optimization problems. In this method,
the uncertain data is defined as a deterministic data set,
and the goal is to search the optimal solution which remains
feasible for all values in the data set. Usually the data set
is called uncertain space or uncertain set. One of the earli-
est endeavors in robust optimization was Soyster′s work in
1973[4]. Soyster proposed a worst-cases model that ensured
feasibility of its solution for all realization of the uncertain
data. There is no doubt that the solution is safe but over
conservative. Then in robust optimization, “safety” be-
comes “relative”, and the purpose is to obtain the trade-off
between robustness and performance.

Ben-Tal and Nemirovski proposed ellipsoidal-set based
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robust optimization formulation, and then showed that
it could be turned to a conic quadratic problem[5−6].
Bertsimas and Sim considered robust linear programming
with coefficient uncertainty using an uncertainty set with
budgets which could be used to control the conservative
degree[7], and the uncertain set was alternatively described
by an arbitrary norm[8]. Li et al. discussed different uncer-
tain sets and their geometric relationship, derived the cor-
responding robust formulations[9], and then analyzed the
probabilistic guarantees on constraint satisfaction[10].

CVaR (Conditional-value-at-risk), introduced by Ben-
Tal and Teboulle, is a special class of optimized certainty
equivalent risk measures[11]. And it is also known that
CVaR is the tightest convex approximation to the individ-
ual chance constraint. But the difficulty lies in the evalu-
ating of the expectation E((·) +), where E stands for the
expectation and x+ =max(0, x). Chen and Sim et al. pro-

vided several bounds on E((·) +)[12], and showed different
approximations to individual chance-constrained problems
used in robust optimization are the consequences of ap-
plying different bounds on E((·) +)[13]. The recent appli-
cations of robust optimization and the approximation to
chance-constrained problems are reviewed in [14−15].

It is showed that robust optimization in approximating
individual chance-constrained has been paid an extensive
attention on. However, for joint chance-constrained prob-
lems, there are only a few efforts that have been made. A
direct way to deal with joint chance-constrained problem is
to decompose it into an individual chance-constrained prob-
lem, and Bonferroni′s inequality can be used as a sufficient
condition, but in many cases the results are even more con-
servative. Chen et al.[13] proposed a novel smart formula-
tion for approximating joint chance-constrained problems
that improved the standard approach using Bonferroni′s
inequality. In their method, a very important step is to
calculate the tightest bound on E((·) +), which needs to
deal with several intractable parameters such as forward
and backward deviations. But sometimes, we can only ob-
tain limited information about the uncertain data such as
bounds, etc. In this paper, we propose two new upper
bounds on E((·) +) which only need the bounds of the un-
certain data, and then give two new approximations for
joint chance constraints.

The rest of this paper is organized as follows. In Sec-
tion 1, we give the problem statement, review the relation-
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ship among E((·) +), CVaR, and individual chance con-
straints, then introduce Chen′s approximate approach to
joint chance constraints. In Section 2, we propose two new
bounds of E((·) +), derive two new approximating formu-
lations for joint chance constraints, and analyze the rela-
tionship between the violation degree and the controlling
parameters of the uncertain sets in robust optimization. In
Section 3, a numerical example is presented. In Section 4,
conclusions are presented.

1 Approximation of chance constraints

In this paper, we denote random variables with tilde sign,
such as z̃. Boldface lower-case letters represent vectors such
as xxx, and boldface upper-case letters represent matrices
such as AAA. We denote x+ = max(x, 0), and use E(·) to
represent expectation.

1.1 Individual and joint chance constraints

Consider the following linear programming (LP) opti-
mization problem:

max cxcxcx

s.t.
∑

j

ãijxj ≤ b̃j , ∀i (1)

where ãij and b̃j represent the true value of the parame-
ters which are subjected to uncertainty. If the uncertain
parameters are bounded, the perturbation ranges can be
expressed as

ãij ∈ [a0
ij − âij , a

0
ij + âij ], b̃j ∈ [b0

j − b̂j , b
0
j + b̂j ],

i ∈ 1, 2, · · · , N, j ∈ 1, 2, · · · , J
where a0

ij and b0
j represent the nominal value of the param-

eters, âij and b̂j represent constant perturbations (which
are positive).

Assume the coefficients ãij and b̃j are linear dependent,
and can be expressed as

ãij = a0
ij +

K∑

k=1

ak
ij z̃k

b̃j = b0
j +

K∑

k=1

bk
j z̃k

z̃zzzzzzzz = (z̃1, z̃2, · · · , z̃K)T ∈ W
where z̃zz is an independent random vector. Suppose set W
is a second-order conic representable set proposed by Ben-
Tal and Nemirovski[5], which includes box, polyhedral and
ellipsoidal sets. We describe the box set as

W = {z̃zz : −zzz ≤ z̃zz ≤ zzz}
By reformulating equation (1), we have

(
∑

j

a0
ijxj − b0

j ) + (
∑

k

∑
j

ak
ijxj z̃k −

∑

k

bk
j z̃k) ≤ 0

(
∑

j

a0
ijxj − b0

j

︸ ︷︷ ︸
) +

∑

k

(
∑

j

ak
ijxj − bk

j )

︸ ︷︷ ︸
z̃k ≤ 0

Let y0
i =

∑
j a0

ijxj − b0
j and yk

i =
∑

j ak
ijxj − bk

j . Then

y0
i +

∑
K

yk
i z̃k ≤ 0

which can be expressed as

y0
i + yyyT

i z̃zzk ≤ 0, yyyT
i = {y1

i , y2
i , · · · , yK

i }
The individual chance constraints can be represented as

P (y0
i + yyyT

i z̃zzk ≤ 0) ≥ 1− εi (2)

Then the original optimization problem with uncertain
parameters (1) can be represented as follows:

max cxcxcx

s.t. P (y0
i + yyyT

i z̃zzk ≤ 0) ≥ 1− εi, ∀i
And the joint chance constraint is defined as

P (y0
i + yyyT

i z̃zzk ≤ 0, i ∈ M) ≥ 1− ε (3)

Equation (3) requires all the linear constraints to be joint
feasible with the probability of at least 1−ε, where ε ∈ (0, 1)
is a desired safety factor. Then the original optimization
problem with uncertain parameters (1) can be represented
as follows:

max cccxxx

s.t. P (y0
i + yyyT

i z̃zzk ≤ 0, i ∈ M) ≥ 1− ε

1.2 Approximation from CVaR measure

From the work of [11] and [12], CVaR function of y0+yyyTz̃zz
can be defined as

ρ1−ε(y0 + yyyTz̃zz) := min
β
{β +

1

ε
E(y0 + yyyTz̃zz − β)+}

and the upper bound of the CVaR function can be used as
an approximation of the individual chance constraints.

Chen et al.[13] defined the upper bound of E((y0+yyyTz̃zz)+)
as π(y0, yyy), and defined

η1−ε(y0, yyy) := min
β
{β +

1

ε
π(y0 − β,yyy)}

then

ρ1−ε(y0 + yyyTz̃zz) =

min
β
{β +

1

ε
E(y0 + yyyTz̃zz − β)+} ≤

η1−ε(y0, yyy)

So a sufficient condition for satisfing the individual
chance constraint (2) is

η1−ε(y0, yyyi) ≤ 0

Then the approximation to individual chance constraint
can be presented as follows:

η1−ε(y0 + yyyTz̃zz) =

min
β
{β +

1

π
(y0 − β,yyyi)} ≤ 0

(4)

Chen et al. also gave the approximation to joint chance
constraints (3) represented as follows:

γ1−ε(YYY , α, M) :=

min
w0,www

{min
β

[β +
1

ε
π(w0 − β,www)]+

1

ε
(
∑
i∈M

π(αiy
0
i − w0, αiyyyi −www))} ≤ 0

(5)
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