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a b s t r a c t

Land Use/Cover Change (LUCC) detection relies increasingly on comparing remote sensing images with
different spatial and spectral scales. Based on scale-invariant image analysis algorithms in computer
vision, we propose a scale-invariant LUCC detection method to identify changes from scale heteroge-
neous images. This method is composed of an entropy-based spatial decomposition, two scale-
invariant feature extraction methods, Maximally Stable Extremal Region (MSER) and Scale-Invariant
Feature Transformation (SIFT) algorithms, a spatial regression voting method to integrate MSER and
SIFT results, a Markov Random Field-based smoothing method, and a support vector machine classifica-
tion method to assign LUCC labels. We test the scale invariance of our new method with a LUCC case
study in Montreal, Canada, 2005–2012. We found that the scale-invariant LUCC detection method pro-
vides similar accuracy compared with the resampling-based approach but this method avoids the
LUCC distortion incurred by resampling.
� 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Big data provides us with numerous new sources of data for
Land Use/Cover Change (LUCC) but it causes problems related big
data’s large volume, complex variety, increasing velocity, and chal-
lenging verification (Miller and Goodchild, 2015). We now have
finer spatio-temporal resolutions of LUCC data, with greater variety
in terms of spectra and sensing platforms (Hansen et al., 2013).
Larger, faster, and diverse data offers significant potential for LUCC
but it quickly exceeds the data handling capacity and capability of
existing LUCC algorithms. Among the four ‘‘Vs” of big data, volume
is predominant focus in LUCC research (e.g., Hampton et al., 2013),
although velocity also has attracted interest (Gil-Yepes et al., 2016;
Wu et al., 2017a, 2017b). Our paper emphasizes the variety and
specifically the various scales that are now available (i.e., different
spatial, spectral, and temporal granularities and extents)
(Goodchild, 2011). Because LUCC uses two or more datasets to
identify changes, big data introduces potential problems in scale
variance (Woodcock and Strahler, 1987).

If scales vary, one usually interpolates or re-samples one or
more datasets to homogenize spatial granularities (i.e., resolutions)
and extents to co-register the images for LUCC detection (e.g.,
Zhang et al., 2016). These spatial scaling operations can cause var-
ious problems like the generation of erroneous artefacts (Kwok and
Sun, 1993), loss of information (Sheikh and Bovik, 2006), and dis-
tortion of geographic entities (Prashanth and Shashidhara, 2009).
As a result of these spatial scaling operations, LUCC accuracy can
be significantly degraded by scale variance (Olofsson et al., 2014)
particularly if we wish to take advantage of the high resolution
characteristic of big data.

To avoid the drawbacks of using spatial interpolation or re-
sampling techniques, research scientists have investigated novel
solutions to handle the challenge of scale variance. For example,
Chen et al. (2012a) clustered pixels into image objects prior to
comparison and then compared the geo-registered objects from
datasets at two different scales. Singh (1989) bypassed the com-
parison of image pixels and explored a post-classification method
to extract LUCC by comparing the class label maps. Xiao et al.
(2016) combined pixel-based method and object-based approach
together to investigate urban LUCC with high-resolution imagery
datasets. All these approaches assume that the scale variance in
any LUCC would be minor and that geo-registration would be suf-
ficient to compare image objects. Big data does not make these
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assumptions by creating new multi-scale challenges for the study
of LUCC.

Computer vision algorithms have been explored to tackle chal-
lenges introduced by different kinds of variance (Radke et al.,
2005). These algorithms are interesting because they focus on dif-
ferentiating objects within datasets and do not rely on geo-
registration because the objects may be moving image to image.
Scale-invariant computer vision algorithms exploit scale by artifi-
cially deriving multiple images, each at a different resolution, from
a single image. They then extract the stable ‘‘scale-invariant” fea-
tures from these derived images. An example of the utility of
scale-invariant computer vision for LUCC can be found in
Dellinger et al. (2014). They proposed using the Scale-invariant
Feature Transformation (SIFT) (Lowe, 2004) to handle images from
diverse sensing platforms. Pham et al. (2016) employed SIFT to
study LUCC before and after a volcanic eruption. They used SIFT
to reduce variations in each image from illumination, color, or view
angle differences. Authors of these two papers compared images at
the same resolution. Ye et al. (2014) utilized another computer
vision algorithm, Speed Up Robust Features (SURF), with images
of different resolutions for LUCC. However, they resampled the
images to create scale homogeneity and then extracted the chan-
ged regions. We want to exploit computer visions algorithms pro-
ven to identify scale-invariant features for LUCC: to detect scale-
invariant changes across multiple remote sensing (RS) images of
different resolutions.

Our scale-invariant LUCC detection method integrates spatial
decomposition, image feature comparisons that are derived from
computer vision, change map smoothing, and LUCC labelling. We
will show that: (1) LUCC can be extracted by comparing scale-
invariant image features directly without spatial interpolation or
re-sampling methods; (2) discrimination of scale-invariant image
features can be enhanced by the integration of extent, shape, and
spectral information for LUCC; and (3) high performance comput-
ing can provide significant support in the scale-invariant LUCC
detection workflow.

The rest of this paper is organized as follows. Section 2 enumer-
ates the benefits and challenges of scale-invariant algorithms
derived from computer vision. Our scale-invariant LUCC detection
method is introduced in Section 3, which is based on the integra-
tion of SIFT and the Maximally Stable Extremal Region (MSER). Sec-
tion 4 is a case study in the Greater Montreal Area from 2006 to
2012, which evaluates our scale-invariant LUCC detection algo-
rithm. This paper concludes in Section 5.

2. Handling scale variance with computer vision algorithms

A large body of computer vision algorithms employ scale vari-
ance. One widely applied approach is feature detection, expressed
in algorithms like SIFT, MSER, and the Gradient Location and Orien-
tation Histogram. Image features are extracted that are stable
across various granularities, which are derived as needed from a
single original image (Witkin, 1984; Huo et al., 2008). Image fusion
is another scale variance handling method in computer vision,
which merges relevant information from at least two images at dif-
ferent spectral and spatial granularities to achieve higher granular-
ities (Li et al., 1995). For example, image fusion with multispectral
IKONOS (4 m, red, green, blue, and infra-red) and panchromatic
(1 m, greyscale) IKONOS images will generate a new image with
1 m resolution and 4 bands of information.

Perona and Malik (1990) and others offered good examples of
how computer vision studies differ from LUCC. Although they
(Perona and Malik, 1990) explored changes in image object bound-
aries at different spatial granularities, their study was conducted
with everyday object extents (e.g., 1 mm at 1 m2). LUCC works

with larger extents and a broader range of granularities. Their
study also was conducted with a single image but LUCC involves
comparing images taken at different times. Their study considered
changes in image object characteristics; however, LUCC functions
at the image level and detects changes throughout the image
extents. Ohn-Bar and Trivedi (2014) proposed a temporal interpo-
lation algorithm to model the movement of human hand gestures.
They studied a time span of deciseconds (100 ms units or 0.1 of a
second). The time span in LUCC datasets may be several years or
decades. Non-linear temporal models (e.g., branch, cyclical, and
isochronical models) may further complicate temporal scale vari-
ance (Jönsson and Eklundh, 2004). Therefore, the scale variance
in LUCC requires additional investigation before we can apply the
computer vision algorithms.

2.1. Similarity of land use/cover entities

LUCC researchers have expressed considerable interest in SIFT.
SIFT is an algorithm designed to detect, describe, and match key
points across images. SIFT points are those points (pixels) that per-
sist in the image regardless of various transformations. SIFT points
are considered to be invariant to spatial granularity, rotation, affine
distortion, translation, and illumination differences. SIFT points are
extracted from regions as the minima/maxima of Difference-of-
Gaussians (Bundy and Wallen, 1984). Image matching, clustering,
and pattern recognition are then performed by matching SIFT
points.

Previous work has highlighted the deficiency of SIFT in distin-
guishing similar land use/cover entities, which mainly occur in
the dense urban areas (Tuermer et al., 2013; Sirmacek and
Unsalan, 2009). Entities such as those composed of cement (e.g.,
buildings and roads) can be so similar (Yang et al., 2003) that SIFT
cannot adequately discriminate among them. In Fig. 1 two images
are carefully geo-registered but SIFT matching largely fails because
of a lack of uniqueness in SIFT characteristics (e.g., for corners of
roads and buildings).

2.2. Use of shape information

Regions are defined by geometric and topological connections
among positions and features. Unsurprisingly, regions are sensitive
to spatial granularity changes (Luo and Min, 2010). SIFT points
(pixels) can be used to compare images directly and mark clusters
of unmatched points as changed regions (Dellinger et al., 2014).
Although change information can be represented by individual pix-
els, our approach considers change as a multi-scale collection of
regions, which is more robust and more useful for LUCC. These
multi-scale regions represent LUCC areas as clusters composed of
different numbers of pixels across scale-heterogeneous remotely
sensed images. Regions not only provide more information about
LUCC (e.g., change boundaries and areas) but also should prove
more resistant to noisy information.

As shown in Fig. 2, numerous changed SIFT key points (red
points) are caused by the noise or artefacts, such as shadows, vehi-
cles, trees, and building decorations. Few of these changed points
represent actual LUCC. To overcome noise or artefacts, we can
combine SIFT with a computer vision algorithm like MSER (Matas
et al., 2004). MSER extracts scale-invariant regions (clusters) and
matches regions across various images. LUCC can take advantage
of MSER’s use of shapes because unmatched MSERs represent
changed regions.

2.3. Integration of spectral information

SIFT is designed for grey scale images and does not consider
spectral information. Since LUCC imagery datasets are being
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