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a b s t r a c t

Lower than expected chlorophyll concentration of a plant can directly limit photosynthetic activity, and
resultant primary production. Low chlorophyll concentration may also indicate plant physiological
stress. Compared to other terrestrial vegetation, mangrove chlorophyll variations are poorly under-
stood. This study quantifies the spatial distribution of mangrove canopy chlorophyll variation using
remotely sensed data and field samples over the Rapid Creek mangrove forest in Darwin, Australia.
Mangrove leaf samples were collected and analyzed for chlorophyll content in the laboratory. Once
the leaf area index (LAI) of sampled trees was estimated using the digital cover photography method,
the canopy chlorophyll contents were calculated. Then, the nonlinear random forests regression algo-
rithm was used to describe the relationship between canopy chlorophyll content and remotely sensed
data (WorldView-2 satellite image bands and their spectral transformations), and to estimate the spa-
tial distribution of canopy chlorophyll variation. The imagery was evaluated at full 2 m spatial resolu-
tion, as well as at decreased resampled resolutions of 5 m and 10 m. The root mean squared errors with
validation samples were 0.82, 0.64 and 0.65 g/m2 for maps at 2 m, 5 m and 10 m spatial resolution
respectively. The correlation coefficient was analyzed for the relationship between measured and pre-
dicted chlorophyll values. The highest correlation: 0.71 was observed at 5 m spatial resolution
(R2 = 0.5). We therefore concluded that estimating mangrove chlorophyll content from remotely sensed
data is possible using red, red-edge, NIR1 and NIR2 bands and their spectral transformations as predic-
tors at 5 m spatial resolution.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Mangroves are one of the most productive and biochemically
active ecosystems (Suratman, 2008). Their dense root system
reduces coastal erosion, and protects the coastline from flood,
waves and storms. These roots also filter and trap pollutants,
thereby decreasing coastal pollution. Mangrove forests serve as a
nursery area for shrimps, fish and crustaceans. On the global scale,
high population pressure in coastal areas has converted many
mangrove forests into infrastructure, salt and rice production,
and aquaculture (Food and Agriculture Organisation, 2007). If
these coastal activities are unsustainably planned and managed,
the result will be a large scale mangrove degradation or deforesta-

tion. Therefore, the maintenance of mangrove ecosystems is
important.

Maintenance of mangrove ecosystems requires better knowl-
edge of their physiological processes such as photosynthesis, net
primary production and plant health (Flores-de-Santiago et al.,
2013). The status of these physiological processes may reflect by
the nutrients in vegetation foliage (Filella and Penuelas, 1994).
For example, plant stress may affect the plant pigment system,
and thus the photosynthesis. More specifically, the chlorophyll
content of any foliage is correlated with nitrogen levels, and hence
photosynthesis, and developmental stages (Filella and Penuelas,
1994; Haboudane et al., 2002; Wu et al., 2008). Therefore, assess-
ing mangrove chlorophyll content is an important tool for ecosys-
tem management.

Chlorophyll variations can occur at a variety of scales from
individual trees to communities, or even broader regions. Varia-
tions are affected by soil type, soil nutrients, topography, and
daily nutrient intake received from other sources (Williams,
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2012). Compared to other ecosystems, understanding mangrove
biochemical variations especially chlorophyll content is relatively
limited (Flores-de-Santiago et al., 2013; Williams, 2012; Zhang
et al., 2012).

Quantifying spatial variability of mangrove chlorophyll from
field observations is time consuming and costly. An intensive sam-
pling scheme is needed throughout the area of interest to capture
fine scale spatial variability. As fine scale sampling is often pro-
hibitive over large areas, predictive models are created to extrapo-
late the information to unsampled regions. Remote sensing is
integral in this process.

Remote sensing has been used for decades to measure the
chlorophyll content of various natural plant communities
(Atzberger et al., 2010; Boegh et al., 2012; Clevers and Kooistra,
2012; Filella and Penuelas, 1994; Joyce and Phinn, 2003). For
example, Wu et al. (2008) compared the performances of several
vegetation indices derived from hyperspectral data in estimating
chlorophyll content, and introduced four new vegetation indices
that are highly correlated with canopy chlorophyll. Gitelson
et al. (2003) investigated the spectral characteristics of the rela-
tionship between reflectance and chlorophyll content of maple,
chestnut, wild vine and beech leaves, and developed a technique
for non-destructive chlorophyll estimation. These studies com-
monly related the absorption and reflectance of light in different
wavelengths with the presence or absence of photosynthetic pig-
ments. Further, developing statistical relationships between the
chemical content extracted from leaf samples and light reflec-
tance in specific wavelengths using airborne or satellite data
allows modeling the spatial variations of chlorophyll over a large
area.

Chlorophyll absorbs light strongly in the blue and red wave-
length regions for the purpose of photosynthesis. Kokaly et al.
(2009) described the broad wavelength region of 400–700 nm as
the most active region for leaf pigments or chlorophyll. Filella
and Penuelas (1994) identified the red edge region (wavelengths
of 680–750 nm) as one of the best remote sensing descriptors of
chlorophyll concentration. Hunt et al. (2013) developed a triangu-
lar greenness index (TGI) considering spectral reflectance at wave-
lengths: 480, 550, and 670 nm, and confirmed TGI as the best
spectral index for low-cost chlorophyll mapping. However, Wu
et al. (2008) stated that the blue region should not be used to esti-
mate chlorophyll content due to its overlapping absorption fea-
tures with carotenoids. Therefore, the chlorophyll prediction
indices that provide higher accuracies are mainly based on the
reflectance around the 550 nm or 680–750 nm regions. In sum-
mary, there are numerous options for revealing canopy pigment
concentration from remotely sensed data.

The challenge is to identify the spectral bands of remote sens-
ing data and their transformations with the highest predictive
power to model the spatial variation of mangrove chlorophyll.
Statistical relationships between field samples and corresponding
reflectance values provide numerical estimates for analyzing the
best predictor. For example, Flores-de-Santiago et al. (2013)
introduced Vog1 index stating that the ratio of reflectance at
740 nm to that of at 720 nm as the best predictor for the south
end of the Urias system mangrove forest in Mexico. Zhang et al.
(2012) identified the red-edge position as the best predictor for
the degraded mangroves of Mexican Pacific during the dry
season.

The aim of this study was to model the spatial distribution
of mangrove canopy chlorophyll content using remotely sensed
data and field samples. Further, the study analyzed the optimal
combination of predictor variables and spatial resolution for
chlorophyll mapping with the random forests regression
algorithm.

2. Materials and methods

2.1. Study area and satellite data

This study focused on the Rapid Creek mangrove forest in Dar-
win, Northern Territory, Australia (12�2204300S, 130�5105500E)
(Fig. 1). The extent of the mangrove forest is about 3.8 ha. Avicennia
marina, Ceriops tagal, Bruguiera exaristata, Lumnitzera racemosa, and
Rhizophora stylosa are the most common mangrove species in this
forest (Heenkenda et al., 2014). There is relatively limited coverage
of the additional species Excoecaria ovalis and Aegialitis annulata.

A WorldView-2 (WV2) 2.0 m spatial resolution, multispectral
satellite image was selected as the remote sensing data source
for this study. The image was acquired on 26th July, 2013, with
eight multispectral bands. The image was radiometrically cor-
rected with the sensor specifications published by DigitalGlobe�

(Updike and Comp, 2010). Digital numbers were converted to at-
sensor radiance values, and then to top-of-atmosphere reflectance
values. The additive path radiance was removed using the dark
pixel subtraction technique in ENVI 5.0 software. Finally, the image
was geo-referenced using rational polynomial coefficients pro-
vided with the image, and ground control points extracted from
digital topographic maps of Darwin, Australia (Heenkenda et al.,
2014). To avoid the confusion between mangroves and non-
mangroves, mangrove areas were extracted using the object-
based image analysis method described in Heenkenda et al.
(2014). We used contextual information, geometry and neighbor-
hood characteristics of objects at different hierarchical levels to
separate mangrove coverage only.

The WV2 multispectral bands were resampled to 5 m and 10 m
spatial resolution using the cubic convolution resampling method.
This was done to simulate remote sensing images from other
satellite missions that provide multispectral images within the
same spectral region such as RapidEye and SPOT 5. Green
(506–586 nm), red (624–694 nm), red edge (699–749 nm), NIR1

Fig. 1. The study area is located in the coastal mangrove forest of Rapid Creek in
Darwin, Northern Territory, Australia; (A) WorldView-2 satellite image and
locations of 29 field sampling plots (5 m � 5 m); WorldView-2 images � Digi-
talGlobe; (B) Australia, the boundary of the Northern Territory, and the study area;
(C) The Rapid Creek mangrove forest (study area); Coordinate system: Universal
Transverse Mercator Zone 52 L, WGS84.
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