
Automatica 72 (2016) 131–137

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Subsystem identification of multivariable feedback and
feedforward systems✩

Xingye Zhang, Jesse B. Hoagg
Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506-0503, United States

a r t i c l e i n f o

Article history:
Received 20 August 2015
Received in revised form
20 January 2016
Accepted 4 May 2016

Keywords:
Subsystem identification
Frequency-domain system identification
Closed-loop system identification
Stability
Feedback and feedforward subsystems

a b s t r a c t

We present a frequency-domain technique for identifying multivariable feedback and feedforward
subsystems that are interconnected with a known subsystem. This subsystem identification algorithm
uses closed-loop input–output data, but no other system signals are assumed to be measured. In
particular, neither the feedback signal nor the outputs of the unknown subsystems are assumed to be
measured. We use a candidate-pool approach to identify the feedback and feedforward transfer function
matrices, while guaranteeing asymptotic stability of the identified closed-loop transfer function matrix.
The main analytic result shows that if the data noise is sufficiently small and the candidate pool is
sufficiently dense, then the parameters of the identified feedback and feedforward transfer function
matrices are arbitrarily close to the true parameters.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Subsystem identification (SSID) is the process of building em-
pirical models of unknown dynamic subsystems, which are inter-
connected with known dynamic subsystems. These connections
can be series, parallel, or feedback. SSID relies on measured data
to identify the unknown subsystems. However, not all input and
output signals to the unknown subsystems are necessarily acces-
sible, that is, available for measurement.

This paper is concerned with closed-loop SSID of unknown
feedback and feedforward subsystems interconnected with a
known subsystem as shown in Fig. 1. The exogenous input r and
closed-loop output y are measured, whereas internal signals u and
v are not assumed to be accessible. We note that closed-loop SSID
is distinct from the well-studied problem of system identification
in closed loop (Forssell & Ljung, 1999; Isermann&Münchhof, 2011;
Van den Hof, 1998; Van den Hof & Schrama, 1995). Specifically,
in SSID, the unknown subsystems have inputs or outputs that are
inaccessible.

SSID has applications in biology and physics as well as human-
in-the-loop systems. For example, many biological systems are
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modeled by the interconnection of subsystems, which may
be unknown and have inaccessible inputs and outputs (Roth,
Sponberg, & Cowan, 2014). Similarly, physical systems are often
modeled by a composition of subsystems, which are based on
either physical laws or empirical information. For example, in
D’Amato, Ridley, and Bernstein (2011), a large-scale physics-based
model of the global ionosphere–thermosphere is improved by
using measured data to estimate thermal conductivity, which
can be regarded as an unknown feedback subsystem. In this
application, the output of the unknown subsystem is inaccessible.

SSID also has application to modeling human behavior. For ex-
ample, there is interest in modeling human-in-the-loop behavior
for applications such as aircraft (Itoh & Suzuki, 2005; Nieuwen-
huizen, Beykirch, Mulder, & Bülthoff, 2007; Nieuwenhuizen &
Bülthoff, 2013; Olivari, Nieuwenhuizen, Venrooij, Bülthoff, &
Pollini, 2012) and automobiles (Hellstrom & Jankovic, 2015;
Macadam, 2003; Steen, Damveld, Happee, van Paassen, & Mulder,
2011). In addition, SSID methods can be used to model human be-
havior in motor control experiments, which study human learn-
ing (Drop, Pool, Damveld, van Paassen, & Mulder, 2013; Kiemel,
Zhang, & Jeka, 2011; Laurense, Pool, Damveld, van Paassen, & Mul-
der, 2015; Zhang & Hoagg, 2016).

Closed-loop SSID of feedback and feedforward models is
considered in D’Amato et al. (2011), Gillijns and De Moor (2006),
Morozov et al. (2011) and Palanthandalam-Madapusi, Gillijns, De
Moor, and Bernstein (2006). However, the identified feedback
and feedforward models obtained from the methods in D’Amato
et al. (2011), Gillijns and De Moor (2006), Morozov et al. (2011)
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Fig. 1. The unknown feedback and feedforward subsystems are to be identified
using the measured data r and y. The internal signals u and v are inaccessible.

and Palanthandalam-Madapusi et al. (2006) can result in unstable
closed-loop dynamics. To address closed-loop stability, Zhang
and Hoagg (2016) present an SSID technique that guarantees
asymptotic stability of the identified closed-loop transfer function.
The approach in Zhang and Hoagg (2016) applies to single-input
single-output (SISO) subsystems and requires that the measured
closed-loop output y is the same as the feedback v.

The new contribution of this paper is a closed-loop SSIDmethod
that: (i) identifies multi-input multi-output (MIMO) feedback and
feedforward subsystems; (ii) allows for a measured output y that
is not necessarily the same as the feedback v; and (iii) guarantees
asymptotic stability of the identified closed-loop transfer function
matrix. This paper adopts techniques from Zhang and Hoagg
(2016) but goes beyond the previous work by addressing MIMO
subsystems and allowing for the measured output y to differ from
the feedback v. Furthermore, the discrete-time SSID approach in
this paper can improve computational efficiency relative to the
continuous-time approaches in Zhang and Hoagg (2016). In this
paper, the feedforward subsystem model is parameterized as a
finite impulse response (FIR) transfer function matrix, which can
improve computational efficiency as discussed in Section 7. To
accomplish (i)–(iii), we use a candidate-pool approach. Our main
analytic result shows that if the data noise is sufficiently small and
the candidate pool is sufficiently dense, then the parameters of the
identified feedback and feedforward transfer functionmatrices are
arbitrarily close to the true parameters.

2. Notation

Let F be either R or C. Then, x(i) denotes the ith component of
x ∈ Fn, and A(i,j) denotes the (i, j) entry of A ∈ Fm×n. Let ∥ · ∥ be
a norm on Fm×n, and let ∥ · ∥2 be the two-norm on Fn. Next, let A∗

denote the complex conjugate transpose of A ∈ Fm×n, and define
∥A∥F ,

√
tr A∗A, which is the Frobenius norm of A ∈ Fm×n. Let AA

denote the adjugate of A ∈ Fm×n.
Let vec A be the vector in Fmn formed by stacking the columns

of A ∈ Fm×n. Let vec −1 be the inverse vec operator, that is,
vec −1(vec A) = A. Let A ⊗ B denote the Kronecker product of
A ∈ Fm×n and B ∈ Fk×l.

Let R[z] denote the set of polynomials with coefficients in R,
and let Rm×n

[z] denote the set of m × n polynomial matrices, that
is, the set of matrix functions P : C → Cm×n whose entries are
elements inR[z]. The degree of the polynomial p ∈ R[z] is denoted
by deg p, and the degree of the polynomial matrix P ∈ Rm×n

[z] is
denoted by deg P , maxi=1,...,m;j=1,...,n deg P(i,j).

Define the open ball of radius ϵ > 0 centered at c ∈ Fm×n by
Bϵ(c) , {x ∈ Fm×n

: ∥x−c∥ < ϵ}. Let Z+ denote the set of positive
integers.

Definition 1. Let ∆ ⊆ Fm×n be bounded and contain no isolated
points. For all j ∈ Z+, let ∆j ⊆ ∆ be a finite set. Then, {∆j}

∞

j=1
converges to ∆ if for each x ∈ ∆, there exists a sequence {xj : xj ∈

∆j}
∞

j=1 such that for all ϵ > 0, there exists L ∈ Z+ such that for all
j > L, xj ∈ Bϵ(x).

3. Problem formulation

Let Gy : C → Cn×m and Gv : C → Cl×m be real rational transfer
function matrices, and consider the linear time-invariant system

Fig. 2. The input r and output y aremeasured, but all internal signals and the noises
are unmeasured.

y(z) = Gy(z)[u(z) + γu(z)] + γy(z), (1)
v(z) = Gv(z)[u(z) + γu(z)], (2)

where y(z) ∈ Cn, γy(z) ∈ Cn, u(z) ∈ Cm, γu(z) ∈ Cm, and v(z) ∈

Cl are the z-transforms of the output, output noise, control, control
noise, and feedback, respectively. The control u is generated by
feedback and feedforward as shown in Fig. 2. Let Gff,Gfb : C →

Cm×l be real rational transfer function matrices, and consider the
control

u(z) = Gff(z)[r(z) + γr(z)] + Gfb(z)[e(z) + γe(z)], (3)

where r(z) ∈ Cl is the exogenous input, γr(z) ∈ Cl is the feed-
forward noise, e(z) , r(z) − v(z) is the error, and γe(z) ∈ Cl is
the error noise. We assume that Gff is asymptotically stable, that is,
the poles of Gff are contained in the open unit disk. The closed-loop
system obtained from (1)–(3) is

y(z) = G̃(z)r(z) + γ (z),

where

G̃ , Gy(Im + GfbGv)
−1(Gfb + Gff) (4)

is assumed to be asymptotically stable, and the noise is

γ , Gy(Im + GfbGv)
−1(Gffγr + Gfbγe − GfbGvγu)

+ Gyγu + γy.

Let N ∈ Z+ be the number of frequency response data, and
define N , {1, 2, . . . ,N}. For all k ∈ N, let θk ∈ [0, π], where
θ1 < · · · < θN . Define the closed-loop frequency response data

H(θk) , G̃(eȷθk) + Γ (eȷθk) ∈ Cn×l, (5)

where Γ : C → Cn×l is such that, for all i ∈ {1, 2, . . . , n} and all
j ∈ {1, 2, . . . , l}, Γ(i,j) , γ(i)/r(j). Define the noise matrix

η∗ , [Γ (σ1) · · · Γ (σN)] ∈ Cn×lN .

This paper presents an SSID method to identify Gff and Gfb un-
der the assumption that Gy, Gv , and {H(θk)}

N
k=1 are known. For

each k ∈ N, H(θk) can be calculated from y and r as H(i,j)(θk) =

y(i)(eȷθk)/r(j)(eȷθk). Thus, {H(θk)}
N
k=1 can be obtained from the acces-

sible signals r and y, and does not depend on the internal signals
(e.g., u and v) or the noise signals γr , γe, γu, and γy, which are not
assumed to be measured.

We assume that Gff is FIR. Thus, we can express the feedfor-
ward transfer function matrix as Gff(z) = z−nffNff(z), where Nff ∈

Rm×l
[z] and nff , degNff. Since Gff is asymptotically stable, it fol-

lows that for sufficiently large order nff, Gff can approximate an in-
finite impulse response (IIR) transfer function matrix to arbitrary
accuracy evaluated along the unit circle. Thus, the assumption that
Gff is FIR does not significantly restrict the class of feedforward be-
havior. The SSID approach in this paper can also be usedwith an IIR
feedforward model, but using an FIR feedforward model improves
computational efficiency as discussed in Section 7.

Let Gy and Gv have the right-matrix-fraction descriptions Gy =

NyD−1 and Gv = NvD−1, and let Gfb have the left-matrix-fraction
description Gfb = D−1

fb Nfb, where Ny ∈ Rn×m
[z], Nv ∈ Rl×m

[z],
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