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a b s t r a c t

The stability of linear time invariant (LTI) systems with independent multiple time delays and the cluster
treatment of characteristic roots (CTCR) paradigm are investigated from a new perspective. It is known
that for such systems, all the imaginary characteristic roots can be detected completely on a small set of
hypersurfaces in the domain of the delays (Sipahi and Olgac, 2006a). They are called kernel hypersurfaces
(KH). The complete description of KH is the only prerequisite for the CTCR stability assessment procedure.
As the number of delays increases, however, their evaluation becomes infeasible. Instead, we present a
procedure to extract the 2-D cross-sections of these hypersurfaces in the domain of any two of the delays
by fixing the remaining delays. In the 2-delay domain of interest, the exact upper and lower bounds of
the imaginary spectra are determined. For this, a combination of half-angle tangent representation of the
characteristic equation and the Dixon resultant theory is used as themain contributions of this paper. The
complete KH are obtained by sweeping the root crossing frequency in this interval. Using this knowledge
CTCR creates the cross-section of the stabilitymap in the domain of the two arbitrarily selected delays.We
demonstrate the effectiveness of this methodology over an example case study with three independent
delays and two commensurate ones.

© 2016 Published by Elsevier Ltd.

1. Introduction

This article concerns the asymptotic stability analysis of a
general retarded class of linear time-invariant multiple time delay
systems (LTI-MTDS):

ẋ(t) = Ax(t) +

p
k=1

Bkx(t − τk) (1)

where x ∈ ℜ
n is the state vector; A, Bk, k = 1, . . . , p are constant

and known matrices in ℜ
n×n and p is the number of independent

delays in the system. Boldface capital notation is used for vector

✩ The material in this paper was partially presented at the 12th IFAC Workshop
on Time Delay Systems, June 28–30, 2015, Ann Arbor, MI, USA. This paper was
recommended for publication in revised form by Associate Editor Yoshito Ohta
under the direction of Editor Richard Middleton.
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andmatrix quantities. The characteristic equation of this system is

g(s, τ) = det


sI − A −

p
k=1

Bke−τks


= 0 (2)

where τ = (τ1, τ2, . . . , τp) ∈ ℜ
p+ is the delay vector. The delays,

at the most stringent case, are assumed rationally independent
from each other.

The analysis of asymptotic stability of systems in (2) within the
domain of the delays is a fundamental problem in the controls
community (Gao, Kammer, Zallugoglu, & Olgac, 2015a,b; Gao,
Zalluhoglu, & Olgac, 2014; Gu, Niculescu, & Chen, 2005; Hale,
Infante, & Tsen, 1985; Michiels & Niculescu, 2007). It is also known
to be an N-P hard class mathematical problem (Toker & Ozbay,
1996). This task becomes much more complex as the number of
delays, p, increases (Jarlebring, 2009). For p ≥ 3, only a limited
number of reports exist in the literature (Almodaresi & Bozorg,
2009; Gu & Naghnaeian, 2011; Sipahi & Delice, 2009, 2011; Sipahi,
Olgac, & Breda, 2010). First three deal with a similar subclass of
MTDS excluding commensurate and cross-talking delay terms in
the corresponding characteristic equation. The method in Sipahi
andDelice (2011) treats themost generalMTDS (1) for determining
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some critical features but fails to declare that this process is only a
preparatory phase to an umbrella stability paradigm, and as such
it does not stand by itself as a stability method.

In this paper, we deploy the Cluster Treatment of Character-
istic Roots (CTCR) paradigm for the task (Sipahi & Olgac, 2006).
CTCR requires the complete knowledge of the loci in the delay
space on which the system exhibits purely imaginary characteris-
tic roots. These loci are composed of two sets: kernel and offspring
hypersurfaces (KOH) (Fazelinia, Sipahi, & Olgac, 2007; Sipahi & Ol-
gac, 2006). The kernel hypersurfaces (KH) consist of points that ex-
hibit the smallest positive delay values on all of the p delays. En-
tire offspring hypersurfaces (OH) are obtained from KH by a point-
wise nonlinear transformation (Sipahi & Olgac, 2006) as will be ex-
plained later. That is, the mere knowledge of KH is sufficient to ob-
tain the complete infinite set ofOH. Anumber ofmathematical pro-
cedures are available in the literature to determine the KOH, such
as Rekasius substitution (Rekasius, 1980), Kronecker summation
(Ergenc, Olgac, & Fazelinia, 2007), and matrix pencil (Niculescu,
1998). For MTDS with p > 3. However, the calculation of the KOH
in the p-dimensional (p-D) delay space is known to be computa-
tionally infeasible (Jarlebring, 2009). Instead, we fix all but two
of the delays arbitrarily and examine the intersections of KOH on
the domain of the 2 delays. For this, a frequency sweeping tech-
nique is deployed, that is completely numerical (Chen & Latch-
man, 1995). It is recognized to be more effective than those tech-
niques that require symbolic computations especially for systems
with higher orders and higher number of delays (Packard & Doyle,
1993). For the frequency sweeping technique, however, precise
knowledge of the upper and lower bounds of the imaginary spectra
are needed. These bounds are known to exist for the retarded time
delay systems (1) (Hale, 1977). Themain contribution of this paper
is in their determination. To achieve this we deploy a combination
of half-angle tangent substitution method (Spivak, 2006) and the
Dixon resultant theory (Cayley, 1865; Dixon, 1908; Kapur, Saxena,
& Yang, 1994) for the first time in literature.

The paper is structured as follows: Section 2 reviews some
key definitions of MTDS and half-angle tangent method. The main
results on determining the bounds of the imaginary spectra and the
2-D cross-section of the stability map for MTDS with more than
three delays are given in Section 3. Section 4 demonstrates the
strength of the proposedmethodology over an example case study
with three independent and two commensurate delays (p = 5).

2. Preliminaries

An LTI-MTDS (1) is asymptotically stable if and only if all its
infinitely many characteristic roots are on the left half of the
complex plane. The continuity of these roots with respect to
delays has already been established in the literature (Hale, 1977;
Hale & Lunel, 1993). Since the kernel and offspring hypersurfaces
(KOH) are the only loci where the characteristic equation (2)
possesses imaginary roots, they are the only potential stability
switching locations (thus often referred to as ‘‘stability switching
hypersurfaces’’). For a complete stability map one needs to
determine all of these KOH exhaustively. As stated in Section 1,
the mere knowledge of KH is sufficient for this. The determination
of KH in p-D delay space is, however, computationally infeasible
for p > 3. Instead, we aim to extract the intersection of the KH on
2-D space of any two of the delays’’. This would serve a simpler
visualization of the problem.

Next, we present some key definitions of time-delayed systems
starting with the complete set of the imaginary eigenvalues � of
(2) for all possible variations of the delay vector τ ∈ ℜ

p+

� = {ω|g(s = ωi, τ) = 0, τ ∈ ℜ
p+, ω ∈ ℜ

+
}

= {ω| ⟨τ, ω⟩ , τ ∈ ℜ
p+, ω ∈ ℜ

+
} (3)

where ⟨τ, ω⟩ notation implies that for a specific combination of
delays as τ ∈ ℜ

p+, there exists an imaginary root, ω ∈ ℜ
+ of (2).

From the set � two important definitions arise.

Definition 1 (Kernel Hypersurfaces (KH) ℘0). The loci of all the
points with ⟨τ, ω ∈ �⟩ correspondence and satisfy the constraint
0 < τjω < 2π, j = 1, 2, . . . , p are called the kernel hypersurfaces.
Notice that the points on these hypersurfaces have the smallest
delay compositions which correspond to the same imaginary root
ω. �

Definition 2 (Offspring Hypersurfaces (OH) ℘). The hypersurfaces
obtained from ℘0 by the following point-wise nonlinear transfor-
mation

τ1 ±
2π
ω

j1, τ2 ±
2π
ω

j2, . . . , τp ±
2π
ω

jp


, ω


,

jk = 1, 2, . . . , k = 1, 2, . . . , p (4)

are called the offspring hypersurfaces. The union of KH and OH is
defined as KOH, i.e., ℘̄ = ℘0 ∪ ℘. �

Definition 3 (Root Tendency (RT)). The root tendency is the
transition direction of the imaginary root ωi, when only one of the
delays, say τj, increases by ε, 0 < ε ≪ 1, while all the others
remain fixed.

RT |
τj
s=ω i = sgn


Re


∂s
∂τj


s=ω i


. (5)

Clearly RT = +1 indicates destabilizing crossing at the imaginary
axis and RT = −1 implies stabilizing crossing. �

Exclusion 1. We limit the analysis in this paper to the most
general time-delayed systems for which the imaginary spectra
� entails only simple eigenvalues for all delay compositions
τ ∈ ℜ

p+. In extremely rare and degenerate cases � may contain
multiple, identical imaginary roots for someparticular delay values
where the RT in (5) becomes cumbersome to determine. Such
degeneracies are kept outside the scope of the paper. If they
arise, however, we use a simple deployment of numerical tools
(such as QPmR Vyhlidal & Zitek, 2009, DDE-BIFTOOL Engelborghs,
Luzyanina, & Roose, 2002) which can reveal the local root
transition features near the particular point τ ∈ ℜ

p+. Interested
readers are also referred to an elaborate treatment on such
degeneracies, but for much simpler single delay cases (Chen, Fu,
Niculescu, & Guan, 2010a,b). These in-depth investigations also
resort to DDE-BIFTOOL to cross-validate their RT determinations.

2.1. Half-angle tangent substitution

The aim is to determine � on an arbitrarily-selected 2-delay
cross-section of KH, take for instance (τ1, τ2) without loss of
generality, while all the remaining delays τ3, τ4, . . . , τp are
fixed. For a root s = ωi we recite the Euler’s formula for the
transcendental terms in (2)

e−τkωi
= cos(υk) − i sin(υk), υk = τkω, k = 1, 2 (6)

and express them in terms of a single parameter, the half-angle
tangent:

cos(υk) =
1 − z2k
1 + z2k

, sin(υk) =
2zk

1 + z2k
,

zk = tan
υk

2


, k = 1, 2.

(7)
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