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a b s t r a c t

The problem studied in this paper is one of improving the performance of a class of adaptive observer
in the presence of exogenous disturbances. The H∞ gains of both a conventional and the newly proposed
sliding-mode adaptive observer are evaluated, to assess the effect of disturbances on the estimation errors.
It is shown that if the disturbance is ‘‘matched’’ in the plant equations, then including an additional sliding-
mode feedback injection term, dependent on the plant output, improves the accuracy of observation.

© 2016 Published by Elsevier Ltd.

1. Introduction

The problem of adaptive observer design for nonlinear systems
is an active research topic that finds many applications in various
engineering fields. Typically, the observer needs to generate
estimates of the vector of unknown parameters and unmeasured
state components under noisy environments (see for example
Besançon, 2007, Ioannou & Sun, 1996). High-gain observers with
gain adaptation for time-varying or nonlinear systems have been
studied in a number of recently published papers, see for instance
Alessandri and Rossi (2013), Boizot, Busvelle, and Gauthier (2010),
Farza, Bouraoui, Ménard, Ben Abdennour, and M’Saad (2014) and
Sanfelice and Praly (2011).

An important issue is the relative degree between the output
signal and the vector of unknown parameters (i.e. the number of
derivatives of the output required, before the direct dependence
on the vector of unknown parameters is obtained). Observers
designed in the case when the degree is one (Fradkov, Nijmeijer,
& Markov, 2000) and for the higher relative degree case (Efimov,
2004; Fradkov, Nikiforov, & Andrievsky, 2002; Xu & Zhang,
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2004; Zhang, 2002) have completely different structures, and the
dimension of the observers in the latter case is much higher.

There exist a number of potential solutions aimed at improving
the robustness in nonlinear systems by applying dynamic or static
feedback. Somevery promising solutions have been obtained in the
area of sliding mode theory, since sliding mode feedback is able
to fully compensate for matched disturbances granting the closed
loop system finite-time stability (Shtessel, Edwards, & Fridman,
2013). Recently the sliding mode approach has been successfully
applied to adaptive observer design in the case of relative degree
one systems (Yan & Edwards, 2008), but the extension of this
theory for adaptive observer design with a high relative degree is
complicated due to the fixed observer structure.

In this paper a method is presented for augmenting the
adaptive observer fromZhang (2002), using slidingmode feedback,
to cope with matched uncertainties in the spirit of Yan and
Edwards (2008). The resulting solution ensures that the level of
observer robustness with respect to some matched disturbances
is improved.

2. Problem statement

Consider the following uncertain nonlinear system:

ẋ = Ax + φ(y, u) + G(y, u)θ + Bv, y = Cx, (1)

where x ∈ Rn, y ∈ Rp, u ∈ Rm are the state, the output and the
control respectively, θ ∈ Rq is the vector of unknown parameters;

http://dx.doi.org/10.1016/j.automatica.2016.05.029
0005-1098/© 2016 Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.automatica.2016.05.029
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2016.05.029&domain=pdf
mailto:Denis.Efimov@inria.fr
mailto:C.Edwards@exeter.ac.uk
mailto:Ali.Zolghadri@ims-bordeaux.fr
http://dx.doi.org/10.1016/j.automatica.2016.05.029


54 D. Efimov et al. / Automatica 72 (2016) 53–56

v ∈ Rs is the vector of external disturbances and v : R+ → Rs

is a (Lebesgue) measurable function of time; the matrices A, B, C
are known and are assumed to have appropriate dimensions (and
the pair (A, C) is detectable); the functions φ : Rp+m

→ Rn and
G : Rp+m

→ Rn×q are also assumed to be known and ensure
uniqueness and existence of solutions to system (1) at least locally.

The symbol |x| denotes the Euclidean norm of a vector x (for
a matrix A the symbol |A| denotes the induced matrix norm), and
for the (Lebesgue) measurable functions v : R+ → Rs, the norm
is defined as ∥v∥ = ess supt≥0{|v(t)|}. For a matrix function A :

R+ → Rs×q we denote ∥A∥ = ∥ |A(t)| ∥. The identity matrix of
dimension n× n is denoted as In and the symbols λmin(A), λmax(A)
represent the minimal and maximal eigenvalues of a symmetric
matrix A ∈ Rn×n.

In this work we will assume that certain signals in the system
(1) are bounded:

Assumption 1. ∥v∥ < +∞, ∥G(y, u)∥ < +∞.

Although assumed bounded, the disturbance v may have a large
magnitude, and therefore special attenuation techniques have to
be applied to ensure reliable estimates for the states in system (1).

The objective of this work is to design an adaptive observer
for (1) under the conditions of Assumption 1. The observer has
to provide estimates of the vectors x and θ with an enhanced
degree of robustness with respect to the external disturbance
v. The proposed design procedure is completed in two steps.
Firstly, an adaptive observer is designed and the H∞ gain between
the disturbances and the output errors is calculated. Secondly,
an additional sliding mode output injection is applied to further
reduce the influence of the disturbance components which cannot
be completely rejected by the first step.

An adaptive observer for the system (1) has been proposed in
Zhang (2002), and takes the form:

ż = Az + φ(y, u) + G(y, u)θ̂ + L(y − Cz) + Ω
˙̂
θ, (2)

where

Ω̇ = (A − LC)Ω + G(y, u),
˙̂
θ = γΩTCT (y − Cz).

(3)

In (2)–(3), z ∈ Rn is the estimate of x, θ̂ ∈ Rq is the estimate
of θ , and Ω ∈ Rn×q is an auxiliary/filter variable, that helps to
overcome possible high relative degree obstructions in system (1).
In (3) γ > 0 is a design parameter, and L is the observer gain that
is chosen to ensure a Hurwitz property for the matrix A − LC . The
analysis of the estimation abilities of the observer in (2), (3) is based
on the errors δ = x − z + Ω θ̃ and θ̃ = θ̂ − θ whose dynamics can
be shown to have the form:

δ̇ = (A − LC)δ + Bv, (4)
˙̃
θ = γΩTCT (Cδ − CΩ θ̃ ). (5)

From Eq. (4) we conclude that δ(t) −→
t→+∞

0 for v = 0 and the

variable δ stays bounded for any bounded disturbance v. From (3)
the Hurwitz property of thematrix A−LC and Assumption 1 imply
boundedness of the variable Ω . If the signal G(y, u) is persistently
exciting (PE) (Anderson, 1977; Yuan & Wonham, 1977), then due
to the filtering property of the variable Ω , the variable CΩ is also
PE. Moreover, it is possible to show (Efimov, 2004) that for any
bounded signal Cδ, the variable θ̃ has a bounded response, and
if Cδ(t) −→

t→+∞
0, then θ̃ (t) −→

t→+∞
0 also. This ‘‘proof’’ is based on

general stability arguments, and no strict Lyapunov function has
been proposed (this drawbackwill be overcame later in the present
work).

3. Conventional adaptive observer

First let us show that the system in (5) is input-to-state stable
with respect to the input Cδ.

Lemma 1 (Efimov& Fradkov, 2015). Let the variableΩTCT be PE and
bounded, i.e. 0 < ρ = ∥CΩ∥ < +∞ and there exist constants
ϑ > 0 and ℓ > 0 such that t+ℓ

t
Ω(τ )TCTCΩ(τ )dτ ≥ ϑ Iq ∀t ≥ 0.

Then
(a) there exists a continuous symmetric matrix function P : R+ →

Rq×q such that ρ−2Iq ≤ 2γ P(t) ≤ αIq for all t ≥ 0, where the
scalar α = γ η−1e2ηℓ and η = −0.5ℓ−1 ln(1 −

γϑ

1+γ 2ℓ2ρ4 );
(b) for all t ≥ 0

Ṗ(t) − γ P(t)Ω(t)TCTCΩ(t) − γΩ(t)TCTCΩ(t)P(t) + Iq = 0;

(c) for S(t, θ̃ ) = θ̃ TP(t)θ̃ we have for all θ̃ ∈ Rq, δ ∈ Rn and t ≥ 0

Ṡ ≤ −γα−1S + 0.5ρ2α2
|Cδ|2.

In addition, for all θ̃ (0) ∈ Rq and all t ≥ 0 the following estimate is
satisfied:

|θ̃ (t)| ≤ ρ
√

α[e−0.5γα−1t
|θ̃ (0)| + ρα∥Cδ∥].

Remark 2. This lemma also provides an estimate on the fastest
rate of decrease of the parametric estimation error θ̃ (t). Specif-
ically, the rate of decrease equals 0.5γα−1

= 0.5ηe−2ηℓ
=

−0.25ℓ−1 ln(1 −
γϑ

1+γ 2ℓ2ρ4 )(1 −
γϑ

1+γ 2ℓ2ρ4 ) = g(γ ). The mapping
g is a function of γ dependent on parameters ϑ > 0, ℓ > 0 and
0 < ρ = ∥CΩ∥ < +∞ of the PE variable ΩTCT . Computing the
derivative of g we obtain:

∂g
∂γ

= 0.25ℓ−1ϑ
1 − γ 2ℓ2ρ4

(1 + γ 2ℓ2ρ4)2


1 + ln


1 −

γϑ

1 + γ 2ℓ2ρ4


.

Since ϑ ≤ ℓρ2 from the definition of the PE property, then the
equation ∂g

∂γ
= 0 has just one solution

γopt = ℓ−1ρ−2,

which gives the maximum rate of convergence g(γopt) = −
1
4ℓ

ln(1 −
ϑ

2ℓρ2 )(1 −
ϑ

2ℓρ2 ) of the parametric estimation error θ̃ (t).
Increasing the convergence rate implies a decrease in α, and also
decreases the value of the H∞ gain.

Note that in order to use these estimates we have to know the
values of ρ, ℓ and ϑ . The existence of such a ρ follows from
Assumption 1 for the Hurwitz matrix A− LC , but to compute it we
have to know ∥x∥, which is assumed to be unavailable. However,
the values of ρ, ℓ and ϑ can all be evaluated numerically during
experiments by computing the integral of Ω(t)TCTCΩ(t) (the
values ℓ and ϑ may be not unique, but fixing one of them imposes
a value on the another).

Theorem 3. Suppose Assumption 1 is satisfied, the variable ΩTCT is
PE, i.e. there exist constants ϑ > 0 and ℓ > 0 such that t+ℓ

t
Ω(τ )TCTCΩ(τ )dτ ≥ ϑ Iq ∀t ≥ 0,

and there exists a n × n matrix W = W T > 0 and constants r > 0,
h > 0 such that

(A − LC)TW + W (A − LC) + 0.5rα2CTC

+ hWBBTW + γα−1W ≤ 0, (6)
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