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a b s t r a c t

This paper aims to determine the fault tolerant quantum filter and fault detection equation for a class of
open quantum systems coupled to a laser field that is subject to stochastic faults. In order to analyze this
class of open quantum systems, we propose a quantum–classical Bayesian inference method based on
the definition of a so-called quantum–classical conditional expectation. It is shown that the proposed
Bayesian inference approach provides a convenient tool to simultaneously derive the fault tolerant
quantum filter and the fault detection equation for this class of open quantum systems. An example of
two-level open quantum systems subject to Poisson-type faults is presented to illustrate the proposed
method. These results have the potential to lead to a new fault tolerant control theory for quantum
systems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of filtering, which in a broad sense is a scheme
considering the estimation of the system states from noisy sig-
nals and/or partial observations, plays a significant role in mod-
ern engineering science. A filter propagates our knowledge about
the system states given all observations up to the current time and
provides optimal estimates of the system states. From the funda-
mental postulates of quantum mechanics, one is not allowed to
make noncommutative observations of quantum systems in a sin-
gle realization or experiment. Any quantum measurement yields
in principle only partial information about the system. This fact
makes the theory of quantum filtering extremely useful in mea-
surement based feedback control of quantum systems, especially
in the field of quantum optics (Rouchon & Ralph, 2015; Wise-
man & Milburn, 2010). A system–probe interaction setup in quan-
tum optics is used as the typical physical scenario concerning the
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extraction of information about the quantum system from con-
tinuous measurements (Belavkin, 1992; Gardiner & Zoller, 2000).
The quantum system under consideration, e.g., a cloud of atoms
trapped inside a vacuum chamber, is interrogated by probing it
with a laser beam. After interaction with the electromagnetic ra-
diation (laser), the free electrons of the atoms are accelerated and
can absorb energy. This energy is then emitted into the electromag-
netic field as photons which can be continuously detected through
a homodyne detector (Wiseman & Milburn, 2010). Using the con-
tinuous integrated photocurrent generated by the homodyne de-
tector one can conveniently estimate the atomic observables. To
find the optimal estimates is then precisely the goal of quantum
filtering theory. A very early approach to quantum filtering was
presented in a series of papers by Belavkin dating back to the early
1980s (Belavkin, 1980, 1992), which was developed in the frame-
work of continuous nondemolition quantum measurement using
the operational formalism from Davies’s precursor work (Davies,
1969). In the physics community, the theory of quantum filtering
was also independently developed in the early 1990s (Carmichael,
1993), named ‘‘quantum trajectory theory’’ in the context of quan-
tum optics.

Particular emphasis is given to the work by Bouten, van
Handel, and James (2007) where quantum probability theory was
used in a rigorous way and a quantum filter for a laser–atom
interaction setup in quantum optics was derived using a quantum
reference probability method. A basic idea in quantum probability
theory is an isomorphic equivalence between a commutative
subalgebra of quantum operators on a Hilbert space and a
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classical (Kolmogorov) probability space through the spectral
theorem, from which any probabilistic quantum operation within
the commutative subalgebra can be associated with its classical
counterpart. The complete quantum probability model is treated
as the noncommutative counterpart of Kolmogorov’s axiomatic
characterization of classical probability. Similar to the classical
case (Bertsekas & Tsitsiklis, 2002), the optimal estimate of any
observable is given by its quantum expectation conditioned on the
history of continuous nondemolition quantum measurements of
the electromagnetic field. The quantum filter was derived in terms
of Itô stochastic differential equations using a reference probability
method.

In practice, classical randomness may be introduced directly
into the system dynamics of quantum systems (Ruschhaupt, Chen,
Alonso, & Muga, 2012). For example, the system Hamiltonian
of a superconducting quantum system may contain classical
randomness due to the existence of stochastic fluctuations in
magnetic flux or gate voltages (Dong, Chen, Qi, Petersen, & Nori,
2015). A spin system may be subject to stochastically fluctuating
fields that will introduce classical randomness into the system
dynamics (Dong & Petersen, 2012). For an atom system subject
to a laser beam, the occurrence of stochastic faults in the laser
device may cause the introduction of classical randomness into
the dynamics of the atom system (Khodjasteh & Lidar, 2005;
Viola & Knill, 2003). For an open quantum system, the system
may evolve randomly and the system dynamics may involve two
kinds of randomnesses, i.e., quantum randomness due to intrinsic
quantum indeterminacy and classical randomness arising from
the imprecise behavior of macroscopic devices. In order to solve
this issue, Bouten, van Handel, and James (2009) presented an
approach to analyzing quantum observables containing classical
random information. By using quantum spectral theorem, a
classical random variable was equivalently represented by a
quantum observable in a commutative quantum probability space
on an external Hilbert space. As a result, a random observable
can be interpreted by compositing an operator-valued function
with this quantum observable and can be well defined on an
enlarging quantum probability space. In order to estimate classical
random parameters from quantum measurements, joint quantum
and classical statistics were also considered in literature using
the concept of ‘‘hybrid’’ classical–quantum density operator,
see e.g., (Dotsenko et al., 2009; Gambetta & Wiseman, 2001;
Kato & Yamamoto, 2013; Negretti & Mølmer, 2013; Somaraju,
Dotsenko, Sayrin, & Rouchon, 2012; Tsang, 2009a,b, 2010). In
this paper, we concentrate on a class of open quantum systems
subject to stochastic faults, aiming at deriving the fault tolerant
quantum filtering equation and the fault detection equation
(Gao, Dong, & Petersen, 2015). In order to achieve this goal, we
consider an approach to uniformly analyzing quantumobservables
and classical random variables. First, the isomorphic equivalent
relationship between a set of random observables equipped
with a quantum–classical expectation operation and a classical
probability space model is determined. Then a quantum–classical
conditional expectation is considered using the associated classical
concept, based onwhich a Bayes formula is obtained. This Bayesian
inference method provides a convenient tool to simultaneously
derive the fault tolerant quantum filter and fault detection
equations for this class of systems. The obtained equations are
given by classical Itôdifferential equations and canbe conveniently
used in practical implementation.

This paper is organized as follows. Section 2 describes
the class of open quantum systems under consideration in
this paper. Section 3 is devoted to statistical interpretation of
quantum observables containing information of classical random
parameters. In Section 4, the fault tolerant quantum filter and fault
detection equations are simultaneously derived for open quantum
systems using a Bayesian inference method. An example of two-
level quantum systems with Poisson-type faults is illustrated.
Section 5 concludes this paper.

2. Heisenberg dynamics of open quantum systems

In this work, we concentrate on an open quantum system that
has been widely investigated in quantum optics (Qi, Pan, & Guo,
2013; vanHandel, Stockton, &Mabuchi, 2005;Wiseman&Milburn,
2010). The quantum system under consideration is a cloud of
atoms in weak interaction with an external laser probe field which
is continuously monitored by a homodyne detector (Bouten et al.,
2007; Mirrahimi & van Handel, 2007). Such a quantum system can
be described by quantum stochastic differential equations driven
by quantum noises B(t) and BĎ(t) (Wiseman &Milburn, 2010). The
dynamics of the quantum system are described by the following
quantum stochastic differential equation2:

dU(t) =


−iH(t)−

1
2
LĎL

dt + LdBĎ(t)− LĎdB(t)


U(t), (1)

with initial condition U(0) = I and i =
√

−1. Here U(t) describes
the Heisenberg-picture evolution of the system operators andH(t)
is the system Hamiltonian. In terms of the system states, if π0 is
a given system state, we write ρ0 = π0 ⊗ |υ⟩ ⟨υ|, where |υ⟩

represents the vacuum state. The system operator L, together with
the field operator b(t) = Ḃ(t)models the interaction between the
system and the field. From quantum Itô rule, one has (Gardiner &
Zoller, 2000)

dB(t)dBĎ(t) = dt,
dBĎ(t)dB(t) = dB(t)dB(t) = dBĎ(t)dBĎ(t) = 0.
The atom system and the laser field form a composite system and
the Hilbert space for the composite system is given by HS ⊗ E =

HS ⊗ Et] ⊗ E(t where we have exhibited the continuous temporal
tensor product decomposition of the Fock space E = Et] ⊗ E(t into
the past and future components (Belavkin, 1992; Holevo, 1991). It
is assumed that dim(HS) = n < ∞. The atomic observables are
described by self-adjoint operators on HS . Any system observable
X at time t is given by X(t) = jt(X) = UĎ(t)(X ⊗ I)U(t). It is
noted that (1) iswritten in Itô form, aswill all stochastic differential
equations in this paper.

In practice, the system Hamiltonian may change randomly
because of, e.g., faulty control Hamiltonians that appear in the
system dynamics at random times (Khodjasteh & Lidar, 2005;
Viola & Knill, 2003) or random fluctuations of the external
electromagnetic field (Dong et al., 2015; Ruschhaupt et al.,
2012). In this case, the system Hamiltonian can be described
by a Hermitian operator H(F(t)) that depends on some classical
stochastic process F(t). Using the quantum Itô rule (Hudson &
Parthasarathy, 1984), one has d(UĎ(t)U(t)) = d(U(t)UĎ(t)) = 0,
which implies that U(t) is a random unitary operator and X(t) =

jt(X) is a random observable, both depending on the stochastic
process F(t). In this paper, for simplicity we still write U(t)
instead of the functional form U(F , t). One can conclude that the
commutativity of observables is preserved, that is, [jt(A), jt(B)] =

0 if [A, B] = 0 where A, B are two system observables in HS . Here
the commutator is defined by [A, B] = AB − BA. In addition, from
(1) one can see that U(t) depends on B(t ′) and BĎ(t ′), 0 ≤ t ′ < t ,
since the increments dB(t) and dBĎ(t) point to the future evolution.
Consequently,

[U(t), dB(t)] = [U(t), dBĎ(t)] = 0. (2)

Similarly, the time evolution operator U(t, s) = U(t)UĎ(s) from
time s to time t depends only on the field operators dB(s′) and
dBĎ(s′)with s ≤ s′ ≤ t . Thus,

[U(t, s), B(τ )] = [U(t, s), BĎ(τ )] = 0, τ ≤ s. (3)

2 We have assumed h̄ = 1 by using atomic units in this paper.
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