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ABSTRACT

This paper presents a new frequency domain identification technique to estimate multivariate Linear
Parameter-Varying (LPV) continuous-time state space models, where a periodic variation of the
parameters is assumed or imposed. The main goal is to obtain an LPV state space model suitable for
control, from a single parameter-varying experiment. Although most LPV controller synthesis tools
require continuous time state space models, the identification of such models is new. The proposed
identification method designs a periodic input signal, taking the periodicity of the parameter variation
into account. We show that when an integer number of periods is observed for both the input and the
scheduling, the state space model representation has a specific, sparse structure in the frequency domain,
which is exploited to speed up the estimation procedure. A weighted non-linear least squares algorithm
then minimizes the output error. Two initialization methods are explored to generate starting values.
The first approach uses a Linear Time-Invariant (LTI) approximation. The second estimates a Linear Time-
Variant (LTV) input-output differential equation, from which a corresponding state space realization is

computed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Although the Linear Time-Invariant framework (Pintelon &
Schoukens, 2012) has given rise to powerful forms of control,
the need to operate processes at even higher levels of precision
requires more advanced model structures, like non-linear block
structured models (Bai & Giri, 2010), time-varying differential
equations (Lataire & Pintelon, 2011; Louarroudi, Lataire, Pintelon,
Janssens, & Swevers, 2014), and Linear Parameter-Varying models
(Rugh & Shamma, 2000; Toéth, 2010). Indeed, most physical
systems behave non-linearly, or have a varying dynamic behavior
that changes with an external parameter, like the temperature or
pressure. Such systems are usually linearized at a chosen operating
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point. However, in practice it is quite common to utilize the
same plant at several set points, each with their own linearized
dynamics. A local LPV approach estimates LTI models at a set of
operating points, after which a macro-model interpolates the local
approximations (Bruzelius & Breitholtz, 2001; De Caigny, Camino,
& Swevers, 2011; Ferranti, Knockaert, & Dhaene, 2011). These
methods do not incorporate knowledge about the rate of variation
of the scheduling parameter and, therefore, the resulting models
are only valid in case of slow parameter variations. Contrary to the
local approach, we opt for a global identification experiment (Rugh
& Shamma, 2000), where the system dynamics are persistently
changed by external signals p(t), called the scheduling parameters.
The goal is to identify the system from a single parameter-varying
input-output experiment.

Modeling of arbitrary time-varying systems is challenging. In
the identification phase, we will therefore focus on periodically
parameter-varying systems. For example, the steady state opera-
tion of a rotating mechanical bearing (Allen, 2009) falls into this
class. In other cases, where one has full control over the experi-
mental setup, including the scheduling parameter p(t), the period-
icity can be imposed. In process applications, only a perturbation of
the associated variables is allowed, due to limitations of actuation
and process loss. In many cases, white noise, binary noise, PRBS
or step inputs are used to perturb the system. It is also possible
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to use a random phase multisine excitation, resulting in a periodic
experiment.

K
ZAk cos(2mkfot + V). (1)

k=K

Here, Ay are user-defined, and vy is uniformly distributed between
[0, 277 ]. Alternatively, the amplitudes and phases can be chosen,
so that the system trajectory domain is explored optimally. In
practice, a random phase multisine signal (1) cannot be discerned
from a periodic white noise sequence in the time domain.

1.1. Target application

Most LPV controllers are designed in continuous time, using
state space models (Apkarian & Gahinet, 1995; Scherer, 1996; Wu
& Dong, 2006), which are given by

x(t) = A(p(0))x(t) + B(p(t))u(t) (2)
Yo(t) = C(p(t))x(t) + D(p(t) )u(t). 3)

We define N, as the size of the state vector x(t) and denote
the number of inputs u(t), outputs y(t) and scheduling signals
p(t) by Ny, N, and N,, respectively. For control design, ideally
the coefficients depend only on the instantaneous value of the
scheduling, i.e. linear combinations of known/chosen static basis
functions in p(t)

Np
Alp(©) =Y Aigi(p(0)) (4)
i=1

where the matrices A; are constant. A common choice for ¢; are
the (multivariate) polynomials p(t)'. Similar definitions hold for
B(p(1)). C(p(t)) and D(p(t)). The educated guess in the choice of
basis function ¢; usually follows from the physics of the problem.
In practice, the true coefficients will have to be approximated with
the proposed basis in ¢; (p(t)). In Laurain, Téth, Zheng, and Gilson
(2012), Least Squares Support Vector Machines (LSSVM) are used,
while in De Caigny et al. (2011) a polynomial basis is selected. From
hereon, we call the collective set of (unknown) observed functions
of the scheduling signals p(t).

1.2. Existing work

Since we are essentially solving a non-linear optimization
problem, the initial values for the parameters have a big impact on
the results. In a first draft of the proposed identification approach
(Goos, Lataire, & Pintelon, 2014), an LTI approximation was used,
as illustrated in Fig. 1. The results were satisfactory, but when
the parameter variation becomes larger or faster, the risk to end
up in a local minimum increases. A simple time-invariant model
can only approximate a slowly time-varying system. Therefore, in
this paper we also examine another initialization routine, which
is based on time-varying differential equations. Nowadays, a lot
of research is dedicated to the identification of time- (Lataire &
Pintelon, 2011; Louarroudi et al.,, 2014) and parameter-varying
(Laurain, Téth, Gilson, & Garnier, 2010; Téth, Laurain, Gilson, &
Garnier, 2012) differential equations.

Na Np
Y a®y?® =Y b u®© (5)

i=1 i=1

Na Np
> a®y?© = bipou® ). (6)
i=1 i=1
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Fig. 1. Originally, the LPV identification was initialized with an LTI approximation.
All coefficients related to the parameter variations are set to zero. The optimization
searches for a good model, by minimizing the prediction error.
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Fig. 2. First a general time-varying input-output model is identified. The
corresponding minimal state space model is realized, with a dynamic dependence
on the coefficients. Next, we try to establish a link between the known parameter
variation p(t) and the time-varying coefficients. Finally, the prediction error is
minimized.

From Toth (2010), we know that it is possible to transform
a static parameter-varying differential equation into a minimal
state space form, but the resulting models will have a dynamic
dependence on the scheduling. From a control perspective, we
want a simple, static model, in which the model only depends
on the current value of p(t). Therefore, direct application of Toth
(2010) does not yield the desired result.

Recently, we have derived exact computational formulas in
the SISO case, to transform arbitrary (but smooth) time-varying
differential equations like (5) into their minimal controllability
canonical state space from Goos and Pintelon (2016). The formulas
are given explicitly in Section 4, rather than implicitly, like in T6th
(2010), and can also be applied to LPV differential equations like
(6).AsinToth (2010), we find that, in general, a minimal realization
introduces dynamic dependence on the scheduling variable p(t).
Although it is not guaranteed that a static minimal state space
model exists, we can start the optimization routine (Goos et al.,
2014) from the obtained model. Proceeding in this way, a simple,
static model approximation can be fitted.

Specifically, in a first step we will use the Linear Periodic Time-
Varying (LPTV) IO identification method described in Section 3.4,
and realize a corresponding LTV SS model in Section 4. Next,
Section 5 establishes a link between this time-varying state space
model and basis functions of the scheduling parameter f (p(t)). In
a final step, we optimize the model fit using simple basis functions
that are suitable for control design. The complete workflow is
depicted in Fig. 2. Section 6 illustrates the proposed approach on
a simulation example, and discusses the properties of all modeling
steps.
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