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a b s t r a c t

This paper presents a novel non-model-based, data-driven adaptive optimal controller design for linear
continuous-time systems with completely unknown dynamics. Inspired by the stochastic approximation
theory, a continuous-time version of the traditional value iteration (VI) algorithm is presented with
rigorous convergence analysis. This VI method is crucial for developing new adaptive dynamic
programming methods to solve the adaptive optimal control problem and the stochastic robust optimal
control problem for linear continuous-time systems. Fundamentally different from existing results, the a
priori knowledge of an initial admissible control policy is no longer required. The efficacy of the proposed
methodology is illustrated by two examples and a brief comparative study between VI and earlier policy-
iteration methods.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic programming (DP) (Bellman, 1957) is an approach
to solving optimal control problems for dynamic systems using
Bellman’s principle of optimality. However, the implementation of
traditional DPmethods in real-world applications is prohibited due
to the ‘‘curse of dimensionality’’ (Bellman, 1961) and the ‘‘curse
of modeling’’ (Bertsekas & Tsitsiklis, 1996). Approximate DP and
neuro-DP were introduced to conquer these two shortcomings
by approximating the value function and control policy via on-
line learning. In the past few decades, numerous approximate
DP methods have been developed to solve the optimal control
problem forMarkov decision processes (Barto, Sutton, & Anderson,
1983; Bertsekas, 2011; Sutton, 1988; Tsitsiklis, 1994; Watkins &
Dayan, 1992). The interested reader can consult the nice tutorials
by Bertsekas and Tsitsiklis (1996), Si, Barto, Powell, and Wunsch
(2004) and Sutton and Barto (1998). Despite their popularity in
real-world applications, the above-mentioned methods usually
overlooked the stability issue of the system. Moreover, the
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underlying state space is assumed either finite or countable, which
is not always applicable in many applications.

Different from the early approximate DP methods, a new
method known as adaptive dynamic programming (ADP), or
heuristic dynamic programming in some literature, is introduced
recently to find stabilizing optimal controllers for continuous-
state space control systems via online learning. Over the past
decade, ADP methods for discrete-time systems have attracted
considerable attention of many researchers; see, Heydari (2014),
Lewis and Vamvoudakis (2011), Ni, He, Zhong, and Prokhorov
(2015), Prokhorov and Wunsch (1997), Wang, Jin, Liu, and Wei
(2011), Wang, Liu, Wei, Zhao, and Jin (2012), Zhang, Luo, and Liu
(2009), and references therein. In parallel, the research in ADP for
continuous-time systems is developed in Jiang and Jiang (2012,
2013), Lewis and Vrabie (2009), Lewis, Vrabie, and Vamvoudakis
(2012), Murray, Cox, Lendaris, and Saeks (2002), Vrabie, Pastra-
vanu, Abu-Khalaf, and Lewis (2009), Vrabie, Vamvoudakis, and
Lewis (2013), Xu, Jagannathan, and Lewis (2012), and numerous
references therein. For more recent work on continuous-time ADP,
the interested reader may find more detailed references in Bian,
Jiang, and Jiang (2014, 2015, in press), Jiang and Jiang (2014b), Li,
Liu, andWang (2014),Modares and Lewis (2014), Song et al. (2015)
and Zargarzadeh, Dierks, and Jagannathan (2015).

Since existing continuous-time ADP methods are established
based on policy iteration (PI) techniques (Beard, Saridis, & Wen,
1997; Kleinman, 1968; Leake & Liu, 1967), a common assumption
is that a stabilizing control policy is known to start the learning
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process. However, this assumption is quite strong. When the
system model is not fully accessible, finding an initial stabilizing
control policy usually involves solving either a linear matrix
inequality (LMI) (Jeung, Oh, Kim, & Park, 1996) or some matrix
Riccati equations (Khargonekar, Petersen, & Zhou, 1990; Zhou &
Khargonekar, 1988), which is computationally expensive. Besides,
since the bounds on the system parameters are often assumed
known in thesemethods (whichmay be exploited to find the initial
stabilizing control policy), the systemmodel is not necessarily fully
unknown.

In this paper, we depart from the commonly used PI scheme,
and propose a new continuous-time VI algorithm that leads to
the development of two ADP methods for linear continuous-
time, continuous-state space systems. Both the optimal control
and stochastic robust optimal control problems will be studied.
Employing the VI method has at least two significant advantages:
(1) an initial stabilizing control policy is not required; and (2)
there is no need to solve matrix equation per-iteration. Due
to these two advantages, VI has become the most widely used
and best understood algorithm for solving discounted Markov
decision problems (Puterman, 1994). Furthermore, VI method for
discrete-time, continuous-state space systems can also be found
in Bertsekas (2005, Proposition 4.4.1) and Lancaster and Rodman
(1995, Section 17.5), for the setting of linear systems; and in
Liu, Wang, Zhao, Wei, and Jin (2012), for a nonlinear extension.
Unfortunately, VI methods for continuous-time, continuous-state
space systems are still not well established. In Vrabie et al. (2013),
some efforts have been made to derive a continuous-time VI
algorithm, but the convergence of Vrabie’s VI has not been proved.

Different from the past results, the continuous-time VI method
given in this paper is inspired by the asymptotic stability property
of the differential matrix Riccati equation (DMRE). It has been
pointed out in Kučera (1973), Shayman (1986) and Willems
(1971), that under observability and stabilizability assumptions,
the unique symmetric positive definite solution to the algebraic
Riccati equation (ARE) is locally asymptotically stable (LAS) for the
DMRE, backward in time. Since it is not easy to implement DMRE
in ADP design, we borrow the idea of stochastic approximation
to construct an iterative updating scheme based on the DMRE,
and then use stochastic approximation method to show the
convergence. While the stochastic approximation method used in
this paper is inspired by the methods in Abounadi, Bertsekas, and
Borkar (2002), Andrieu, Moulines, and Priouret (2005) and Chen
and Zhu (1986), it is slightly different from these results in the
sense that the solution to the proposed algorithm stays in a subset
of a level set of the Lyapunov function (see Lemma 3.4).

Since VI is employed in our ADP design, instead of starting
from an initial stabilizing control policy, the proposed algorithms
start from an arbitrary real symmetric and positive definite matrix
representing the initial value function. Moreover, since the data
matrices (Θ in (19) and Π in (24)) in the ADP algorithms are
independent of the number of learning iterations, there is no need
to recalculate the matrix inverse in each iteration. This implies
that ourmethods, for some systems,may bemore computationally
efficient in each iteration than the methods in Jiang and Jiang
(2012) and Vrabie et al. (2009) (see Remark 4.1 and Section 6.3).
The obtained results are first tested by a single machine-infinite
bus power system. Then,we test our stochastic robust ADPmethod
with a human arm movement task (Wolpert, Diedrichsen, &
Flanagan, 2011). A comparison between our continuous-time VI
and Kleinman’s algorithm is also given. These examples show that
our method serves as a powerful tool to solve non-model-based
adaptive optimal control problems.

The remainder of this paper is organized as follows. In Section 2,
some preliminaries regarding the optimal control problem for
linear continuous-time systems are introduced. In Section 3,

a new continuous-time VI method is presented with rigorous
convergence analysis. Moreover, a detailed comparison between
Vrabie’s VI and our method is given. Based on the obtained
result, two ADP methods for deterministic linear continuous-time
systems are developed in Section 4. In Section 5, the obtained
ADP algorithm is extended to solve the robust optimal control
problem for linear continuous-time stochastic systemswith input-
dependent noise. Two examples are presented in Section 6. Finally,
the conclusion is drawn in Section 7.
Notations: Throughout this paper, In denotes the identity matrix of
dimension n.R andR+ denote the set of real numbers and the set of
nonnegative real numbers, respectively.Z+ denotes the set of non-
negative integers. |·| denotes the Euclidean norm for vectors, or the
induced matrix norm for matrices. S n denotes the normed space
of all n-by-n real symmetric matrices, equipped with the induced
matrix norm. S n

+
= {P ∈ S n

: P ≥ 0}. For a matrix A ∈ Rn×m, AĎ

denotes the pseudoinverse ofA; vec(A) = [aT1, a
T
2, . . . , a

T
m]

T , where
ai ∈ Rn is the ith column of A. For any A ∈ S n, denote vecs(A) =
[a11, a12, . . . , a1n, a22, a23, . . . , an−1n, ann]T , where aij ∈ R is the
(i, j)th element of matrix A. ⊗ indicates the Kronecker product. A
function f : Q → R+, where Q ⊆ Rn and 0 ∈ Q , is called positive
definite, if f (x) > 0 for all x ∈ Q \ {0}, and f (0) = 0. A function f is
of class C 0(Q ), whereQ ⊆ Rn, if f is continuous onQ . For a contin-
uously differentiable functionV : Rn

→ R,∇V (x) ∈ R1×n denotes
the gradient of V at x. For any 0 < T < ∞, D([0, T ], S n) denotes
the space of functions from [0, T ] to S n, that are right-continuous
with left-hand limits, equippedwith the Skorokhod topology (Sko-
rokhod, 1956).

2. Mathematical preliminaries

2.1. Review of stochastic approximation

Stochastic approximation, also known as stochastic gradient
descent in some literature, serves as an important tool to solve
stochastic optimization problems. Over the past several decades,
various stochastic approximation methods have been developed
(Abounadi et al., 2002; Andrieu et al., 2005; Borkar, 1998;
Chen, 2002; Chen & Zhu, 1986; Kushner & Yin, 2003; Ljung,
1977; Robbins & Monro, 1951). Consider the following stochastic
approximation algorithm:

θk+1 = θk + ϵkg(θk, wk)+ Zk,

where g is a nonlinear function, {wk}
∞

k=1 is a sequence of i.i.d. zero-
mean random noise, ϵk is the step size, and Zk is the projection
term. Assume

ϵk > 0,
∞
k=0

ϵk = ∞,

∞
k=0

ϵ2
k <∞, (1)

and the following dynamical system

θ̇ = Ewg(θ, w),

where E represents the expectation operator, is asymptotically
stable at a fixed-point θ∗, then under some mild conditions
on θ0, wk and Zk, one can show (Kushner & Yin, 2003) that
limk→∞ θk = θ∗ with probability one.

In this paper, we develop a continuous-time VI algorithm for
linear systems based on the stochastic approximation theory.

2.2. System description

This paper considers the following linear system:

ẋ = Ax+ Bu, x(0) = ξ, (2)

where x ∈ Rn is the system state, u ∈ Rm is the input, and A ∈ Rn×n

and B ∈ Rn×m are unknownmatrices. Assume (A, B) is stabilizable.
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