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a b s t r a c t

We characterize incentive equilibrium strategies and their credibility conditions for the class of
linear–quadratic dynamic games played over event trees. In such games, the transition from one node to
another is nature’s decision and cannot be influenced by the players’ actions. We show that it is possible
for two players wanting to optimize their joint payoff over a given planning horizon to achieve this as an
incentive equilibrium. This therefore ensures that cooperation will continue from one node to the next. A
simple example illustrates these strategies and the credibility conditions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A main issue in cooperative dynamic games is how to sustain
cooperation over time, that is, how to ensure that each player
will indeed implement her part of the agreement as time goes
by. The breakdown of long-term agreements before their maturity
has been empirically observed. Schematically, a breakdown will
occur either if all the parties agree at an intermediate instant of
time to replace the initial agreement by a new one for the remain-
ing periods, or if one of the players finds it (individually) rational
to deviate, that is, to switch to her noncooperative strategy from
that time onward (Haurie, 1976). The literature in (state-space) dy-
namic games suggests mainly three approaches to sustain cooper-
ation over time.

Time consistency: A cooperative agreement is time consistent at
an initial date and state if, at any intermediate instant of time, the
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cooperative payoff-to-go of each player dominates, at leastweakly,
her noncooperative payoff-to-go; see, e.g., Yeung and Petrosyan
(2005). Note that a time-consistent payment schedule always ex-
ists, and that the cooperative and noncooperative payoffs-to-go
are compared along the cooperative state trajectory, which implic-
itly assumes that the players have so far played cooperatively. A
stronger concept is agreeability, which requires the cooperative
payoff-to-go to dominate the noncooperative payoff-to-go along
any state trajectory; see, e.g., Kaitala and Pohjola (1990). For a sur-
vey of time consistency, see Zaccour (2008).

Cooperative equilibrium: If the cooperative solution is an
equilibrium, then durability of the agreement is not an issue
anymore as it will be in the best interest of each player not to
deviate from the agreement. To endow the cooperative solution
with an equilibrium property, one approach is to use trigger
strategies that credibly and effectively punish any player deviating
from the agreement; see, e.g., Dockner, Jorgensen, Long, and Sorger
(2000), Haurie and Pohjola (1987) and Tolwinski, Haurie, and
Leitmann (1986).

Incentive equilibrium: Trigger strategies may embody large
discontinuities, i.e., a slight deviation from an agreed-upon path
triggers harsh retaliation, generating a very different path from
the agreed-upon one. An alternative approach, which will be
followed here, is to use incentive strategies that are continuous
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in the information. An incentive equilibrium has the property
that when both players implement their incentive strategies, the
cooperative outcome is realized as an equilibrium. Therefore, no
player should be tempted to deviate from the agreement during
the course of the game, provided that the incentive strategies
are credible. An incentive strategy is credible if it is better for a
player who has been cheated to use her strategy than to stick to
the coordinated solution. Ehtamo and Hämäläinen (1989, 1993)
used linear incentive strategies in a dynamic resource game and
demonstrated that such strategies are crediblewhendeviations are
not too large.

The concept of incentive strategies has of course been around
for a long time in dynamic games (and economics), but it was often
understood and used in a leader–follower (or principal–agent)
sense. The idea is that the leader designs an incentive to induce
the follower to reply in a certain way, which is often meant to
be (only) in the leader’s best interest, but may also be in the
best collective interest (see the early contributions by Ho (1983)
and Basar (1984)). In such a case, the incentive is one sided.
Here, we focus on two-sided incentive strategies, with the aim of
implementing the joint optimization solution.

The objective of this paper is to characterize incentive
equilibrium strategies and outcomes for the class of dynamic
games played over event trees (DGET). In these games, the
transition fromone node to another is nature’s decision and cannot
be influenced by the players’ actions. For a detailed description
of DGET, see Haurie, Krawczyk, and Zaccour (2012). We focus on
linear–quadratic dynamic games, a popular class in applications
because it admits closed-form solutions (see, e.g., the books by
Engwerda (2005) and Haurie et al. (2012)). Martín-Herrán and
Zaccour (2005, 2009) characterized incentive strategies and their
credibility for linear-state and linear–quadratic dynamic games
(LQDG), but in a deterministic setting.

The rest of the paper is organized as follows. In Section 2, we
briefly recall the ingredients of DGET and derive the coordinated
solution. In Section 3, we define the incentive equilibrium
strategies; andwe provide a numerical illustration in Section 4.We
briefly conclude in Section 5.

2. Linear–quadratic DGET

Let T = {0, 1, . . . , T } be the set periods, and denote by
(ξ (t) : t ∈ T ) the exogenous stochastic process represented by an
event tree, with a root node n0 in period 0 and a set of nodes N t in
period t = 0, 1, . . . , T . Each node nt

∈ N
t represents a possible

sample value of the history ht of the ξ (.) process up to time t .
Let a(nt) ∈ N t−1 be the unique predecessor of node nt

∈ N
t for

t = 0, 1, . . . , T , and denote by S(nt) ∈ N t+1 the set of all possible
direct successors of node nt

∈ N
t for t = 0, 1, . . . , T − 1. We call

scenario any path fromnode n0 to a terminal node nT . Each scenario
has a probability, and the probabilities of all scenarios sum up to
1. We denote by πnt the probability of passing through node nt ,
which corresponds to the sum of the probabilities of all scenarios
that contain this node. In particular, πn0

= 1, and πnT is equal to
the probability of the single scenario that terminates in (leaf) node
nT

∈ N T . Also,


nt∈N t πnt
= 1,∀t .

Denote by ui(nt) ∈ Unt
i ⊆ R

mnt
i the decision variable of player

i at node nt , where Unt
i is the control set, mnt

i is the dimension
of the decision variable for player i, i = 1, 2. Let u(nt) de-
note the vector of decision variables for both players at node nt ,
i.e., u(nt) = (u1(nt), u2(nt)). Let X ⊆ Rq be a state set. Denote by
x(nt) the state vector at node nt . An admissible S-adapted strategy
(where S stands for sample, as in the terminology of Haurie et al.
(2012)), for player i over the event tree is a vector ui =


ui(nt) :

nt
∈ N t , t = 0, . . . , T − 1


, that is, a plan of actions adapted to

the history of the random process represented by the event tree.

Assuming a linear–quadratic game structure, the optimization
problem of player i is as follows:

max
ui

Vi(x,u) = max
ui

T−1
t=0


nt∈N t

πnt
1
2
x′(nt)Qi(nt)x(nt)

+ p′

i(n
t)x(nt)+

1
2

2
j=1

u′

j(n
t)Rij(nt)uj(nt)


+


nT∈N T

πnT
1
2
x′(nT )Qi(nT )x(nT )+ p′

i(n
T )x(nT )


, (1)

subject to

x(nt) = A(a(nt))x(a(nt))+

2
j=1

Bj(a(nt))uj(a(nt)),

x(n0) = x0, (2)

where Qi(nt) ∈ Rq×q, Rij(nt) ∈ Rmnt
j ×mnt

j , pi(nt) ∈ Rq, A(nt) ∈ Rq×q

and Bj(nt) ∈ Rq×mnt
j for all nt

∈ N t , t ∈ T .

Assumption 1. The matrices Qi(nt) and Qi(nT ) are symmetric and
negative semi definite and Rii(nt) is negative definite. Additionally,
thematrices Rij(nt), i ≠ j are such that Rii(nt)+Rji(nt) are negative
definite as well.

By Assumption 1, the objective function in (1) will be strictly
concave in the control variables. Note that if N t consists of one
element for all t , then this optimization problem reduces to the
standard linear–quadratic optimal-control problem.

2.1. Cooperative solution

Suppose that the two players agree to cooperate and maximize
their joint payoff, that is, maxui

2
i=1 Vi (x,u) subject to (2). The

Lagrangian associatedwith the joint optimization problem is given
by:

LC
=

T−1
t=0


nt∈N t

πnt
1
2
x′(nt)


Q1(nt)+ Q2(nt)


x(nt)


+


p1(nt)+ p2(nt)

′x(nt)+
1
2


u1(nt)

u2(nt)

′

×


R11(nt)+ R21(nt) 0

0 R12(nt)+ R22(nt)

 
u1(nt)

u2(nt)


+


nT∈N T

πnT
1
2
x′(nT )


Q1(nT )+ Q2(nT )


x(nT )

+ (p1(nT )+ p2(nT ))′x(nT )


+

λC (n0)

′
(x(n0)− x0)

+

T
t=1


nt∈N t

πnt λC (nt)
′

x(nt)− A(a(nt))x(a(nt))

−

2
j=1

Bj(a(nt))uj(a(nt))

. (3)

This is a standard dynamic optimization problem with the
following optimality conditions:

∂LC

∂unt
i

= πntu′

i(n
t)

2
j=1

Rji(nt)+ λC (S(nt))Bnt
i = 0,

⇒ uC
i (n

t) = −
1
πnt

 2
j=1

Rji(nt)
−1Bnt

i λ
C (S(nt)). (4)
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