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a  b  s  t  r  a  c  t

Many  biological  systems  are  comprised  of  multiple  components  that  are  interacting  nonlinearly  and
producing  multiple  outputs  of  distinct  frequency  characteristics.  Quantitative  analysis  of  the  observable
outputs  to identify  the  dependencies  among  components  is  imperative  to  increase  the  understanding  of
the  underlying  mechanism  of  the  system.  In this  work,  quantification  of nonlinear  dependencies  in  terms
of mutual  information  between  time  series  with  respect  to frequency  characteristics  is explored.  A new
model-free  methodology  is developed  and  tested  on simulated  data  from  coupled  nonlinear  systems.  The
results indicate  that  the  proposed  framework  performs  better  than  a  conventional  method  for  quantifying
interactions.  Application  on  real-world  electrophysiological  data  from  an  emotional  state  assessment
experiment  reveals  specific  brain  areas  that  are  associated  with  levels  of  emotional  responses.

©  2018  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Applying system approaches in the study of problems arising in
engineering, biology, ecology and psychology is a natural approach
[1]. In biomedical research, individuals (e.g. cells, tissue, organ
systems) and cross-individuals as suggested by scientific holism
[2] (e.g. cardiac-respiratory system, nervous-cardiac system) could
both be treated as complex systems comprised of multiple compo-
nents. These components are typically interacting nonlinearly [3],
each producing some observable outputs.

Without exact knowledge of the underlying mechanism of the
system, we are confined to the study and quantitative analysis
of the observable outputs (i.e. biological signals) to gain under-
standing of the system. Biological signals are usually recorded
through some sensor or device and can represent very diverse
aspects of the systems characteristics, ranging from electrical activ-
ity, to chemical concentrations, or any other characteristic that has
dynamic properties (i.e. changes over time). Commonly observed
biological signals in research are: the electrical potential differ-
ence between two electrode sensors, e.g. electroencephalogram
(EEG) and electrocardiogram (ECG); the magnetic fields changes
produced by electrophysiological activity, e.g. magnetoencephalo-
gram (MEG) and magnetocardiogram (MCG); the brain blood flow
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activity, i.e. functional magnetic resonance imaging (fMRI); gal-
vanic skin response (GSR); potential of hydrogen (pH); arterial
blood pressure, etc. Although these signals are inherently very dif-
ferent from each other, a nearly universally common characteristic
is their quasi-periodic (oscillatory) structure due to specific fre-
quency components [4]. Biological signals have been employed
in research extensively, e.g. to detect distinct frequency compo-
nents from the human brain [5,6], to help with the diagnosis of
Alzheimer’s disease [7–9], to study epilepsy [10], to estimate flow
velocity and Doppler spectra of arterial disease [11] and to under-
stand the anesthetic drug effect [12].

The most interesting and important biological system to study
is the human brain, due to its complexity and the plethora of sig-
nals that produces. The brain contains approximately 86 billion
connected neuronal cells [13]. To execute different brain functions
simultaneously, subsets of neurons work together under particu-
lar/individual tasks [14], and, furthermore, the different subsets
may interact with each other. Researchers from a broad range of
background study EEG as multivariate time series through quan-
titative methods for disease diagnosis, or in general for the study
of brain connectivity [15–21]. Kaminski and Blinowska studied the
frequency content with relation to the direction of electrical activity
spread [15], and Nolte et al. using the coherency measure showed
that brain activity at a specific frequency band is associated with
the communication in the motor areas across hemisphere [16].
Schindler et al. demonstrated that a correlation structure could
show a dynamic evolution during focal onset seizures [17]. Salvador
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et al. applied the partial coherency spectrum for multivariate time
series and constructed frequency-dependent graphs of the brain
functional networks [18]. Sherman et al. developed a bicoherence
gain function for an application of tracking thalamo-cortical nonlin-
ear interactions in epilepsy patients with or without antiepileptic
drugs [19]. Ince et al. proposed a general framework to analyze
neuroimaging data using mutual information [22], and Jeong et al.
and Na et al. developed time-domain mutual information variants
to characterize the complexity and the information transmission
between cortical areas in patients with Alzheimer’s disease [20]
and schizophrenics [21]. However, in most studies, either linear
measures (e.g. correlation and coherence) are employed to study
the nonlinear interacting mechanism [17,16,18], or interactions are
quantified only within the time domain [20,21].

A better measure of interaction that could be used to study
nonlinear interactions with respect to specific frequencies remains
of interest in neuroscience research. Salvador et al. considered
functional connectivity based on mutual information in the fre-
quency domain to describe the covariability between brain regions
with application to schizophrenia studies [23–25]. However, the
multivariate normality they assumed and the assumption of lin-
ear interactions limits the applicability of the methodology and
even becomes contrary to the original problem. A similar approach
was used by Cassidy at al. [26] where again mutual information
in the frequency domain was employed under the assumption of
normality to develop a new approach for functional brain con-
nectivity analysis. Brillinger proposed a statistical nonparametric
approach to study the dependence of bivariate time series by
means of the mutual information in the frequency domain, and
he showed its superiority compared with correlation and coher-
ence in an example studying ambient seismic noise data [27]. In
his paper, the mutual information was quantified between bivari-
ate stationary time series in terms of the real and imaginary part
of their Fourier transform at each frequency. Another application-
driven frequency-dependent neural connectivity method, called
Time-Frequency Cross Mutual Information, was developed initially
for MEG  and sEMG-MEG multi-modality dataset [28] and then nat-
urally extended to EEG to study brain functional organization under
real motor vs imaginary motor tasks [29,30].

Based on the work of Brillinger [27], we herein present a method
to quantify interactions between time series with respect to fre-
quency, by studying directly the spectral characteristics of the time
series both individually and jointly. Measures of dependency in
the time domain, such as correlation (linear measure) and mutual
information (nonlinear measure) do not provide any information
regarding the frequencies where the dependency may  exist. Given
that typical biological signals contain multiple frequency com-
ponents, estimation of dependency in the time domain is biased
towards the components/frequencies in the signal that have the
highest amplitude (most energy), while dependency at other com-
ponents/frequencies may  be masked. On the other hand, study of
signals in the frequency domain by linear measures (e.g. coherence
and its derivatives) can indeed capture dependency at specific fre-
quencies, but by construction are accurate only for the case of a
linear relation. Our aim is to bridge this gap and provide a model-
free method to quantify nonlinear dependency in the frequency
domain. In the following sections, we first give detailed description
of the methodology framework including spectral characteristics
of time series, probabilistic dependence, density estimation and
various implementation details. We  test the proposed methodol-
ogy on simulated data from a variety of coupled nonlinear systems
and compare the results with those obtained from application of a
traditional dependency measure. Finally, we apply our methodol-
ogy to a real-world electrophysiological dataset to study the brain’s
response to emotional stimuli.

2. Methods

The measure of Mutual Information (MI) stems from Informa-
tion Theory and is a reliable metric of the statistical dependency
of two random variables [31,27]. Our aim is to derive appropriate
formulations of MI  between two  signals as functions of frequency
using the representation of the signals in the frequency domain. The
core idea of our approach is that the observed signal (time series)
values in the time domain are less informative than the spectral
characteristics we  observe in the frequency domain.

2.1. Spectral characteristics

Biological signals are nonlinear, nongaussian and nonstationary
stochastic processes [32,33]. Given a signal x(t) the Fourier trans-
form X(f ) =

∫ ∞
−∞ x(t)e

−i2�ftdt decomposes the signal into a sum
of complex exponentials (frequency domain representation) [34],
allowing us to estimate the magnitude and phase for each fre-
quency component in the signal. The magnitude represents the
intensity of each frequency component (1) (magnitude spectrum),
while the phase refers to its offset from the origin (2) (phase spec-
trum).

XA(f ) =
√
Re(X(f ))2 + Im(X(f ))2, (1)

X�(f ) = arctan
{
Im(X(f ))
Re(X(f ))

}
. (2)

For two signals x(t) and y(t), the magnitude-squared coherence
function (MSC) [35] is defined as

CXY (f ) = |PXY (f )|2
PXX (f )PYY (f )

, (3)

where PXY(f), PXX(f) and PYY(f) are the cross- and auto-spectral den-
sities of x(t) and y(t), derived from their Fourier transforms X(f) and
Y(f). Due to its simplicity in estimation, MSC  is one of the most
commonly used measures of dependency. It quantifies the linear
dependency of the two signals at frequency f, taking value 0 when
they are linearly independent and 1 when there is a perfect linear
relation. Unfortunately, when the relation between the two signals
is nonlinear, MSC  can produce totally misleading results.

2.2. Dependency in the frequency domain

In order to estimate a more general measure of dependency,
capable of capturing nonlinear relations, we  employ the well
known measure of Mutual Information, and we define the mutual
information between the magnitudes of x(t) and y(t) at frequency f
as

IAAXY (f ) = E

[
ln

p(XA(f ), YA(f ))
pX (XA(f ))pY (YA(f ))

]
, (4)

where E is the expectation operator, and p(XA(f), YA(f)) and pX(XA(f)),
pY(YA(f)) are the joint and marginal probability densities of XA(f),
YA(f). This is the traditional definition of MI  [31], where we treat
the magnitudes at frequency f as random variables. We  can simi-
larly define I��XY (f ) for the mutual information between phases and

IA�XY (f ) for the magnitude-phase mutual information. We  note the
similarity between Eqs. (4) and (3), where the spectral densities
in the fraction are replaced with probability densities. MI is by
construction non-negative and can take values from 0 to +∞.  The
formulations for IAAXY (f ), I��XY (f ) and IA�XY (f ) allow for more flexibility in
estimating dependencies, since they do not assume a pre-specified
type of relation, and they are estimated on the basis of the joint dis-
tributions. We  note that this also makes the measures potentially
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