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a b s t r a c t

Certain control applications require that performance variables are explicitly distinguished from
measured variables. The performance variables are not available for real-time feedback. Instead, they
are often available after a task. This enables the application of batch-to-batch control strategies such as
Iterative Learning Control (ILC) to the performance variables. The aim of this paper is first to show that the
pre-existing ILC controllers may not be directly implementable in this setting, and second to develop a
new approach that enables the use of different variables for feedback and batch-to-batch control. The
analysis reveals that by using pre-existing ILC methods, the ILC and feedback controllers may not be
stable in an inferential setting. Therefore, the complete closed-loop system is cast in a 2D framework to
analyze stability. Several solution strategies are outlined. The analysis is illustrated through an application
example in a printing system. Finally, the developed theory also leads to new results for traditional ILC
algorithms in the common situation where the feedback controller contains a pure integrator.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing performance requirements on systems demand an
explicit distinction between measured variables and performance
variables. Performance variablesmay not be available for real-time
feedback control due to computational constraints, physical limita-
tions in sensor placement, delays in acquiring measurements, etc.
Examples include heat exchangers (Parrish & Brosilow, 1985) and
motion systems (Oomen, Grassens, & Hendriks, 2015).

In many cases, the performance variables are available offline.
For instance, when the final product is inspected afterwards, the
‘true’ performance is revealed. This enables batch-to-batch control
using performance variables. A common batch-to-batch control
strategy is Iterative Learning Control (ILC) (Bristow, Tharayil,
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& Alleyne, 2006). In ILC, the control signal is updated trial-
to-trial using measurement data of previous trials to improve
performance. Traditionally, ILC is applied to the measured
variables that are also available for the feedback controller. This
classical approach is well-established with many results on the
convergence and robustness properties (Norrlöf & Gunnarsson,
2002; Wang, Gao, & Doyle, 2009).

A direct combination of ILC acting on the performance variables
while the feedback controller uses different real-time measured
variables may lead to potentially hazardous situations. Indeed, the
feedback controller aims to regulate the measured variables while
the ILC regulates the performance variables. This may lead to a
conflict in case a parallel (Bristow et al., 2006) ILC-feedback control
structure is used. In Longman and Lo (1997), initial indications
of such a conflict are already reported. In Wallén, Norrlöf, and
Gunnarsson (2011), a related and specific approach is presented
to use observers to infer the performance variables from the real-
timemeasurements instead of a direct performancemeasurement.
The main idea is that distinguishing between performance and
measured variables can potentially fully exploit the use of ILC.
The use of performance variables for ILC and different real-time
measured variables for feedback control is referred to as inferential
ILC in the present paper.

Although ILC is potentially promising for the mentioned infer-
ential control applications, the direct application of pre-existing
ILC design methods may not lead to satisfactory performance and
stability properties. In fact, in this paper it is shown through a for-
mal analysis that using traditional ILC design approaches such as
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Bristow et al. (2006) and Norrlöf and Gunnarsson (2002) in the in-
ferential ILC situation can lead to implementations that are unsta-
ble.

The main result of this paper is a framework for inferential
ILC, including a detailed analysis and new learning control
approaches. To facilitate the analysis, the time-trial dynamics of
a common ILC algorithm with dynamic learning filters is cast
into a 2D Framework using discrete Linear Repetitive Processes
(dLRP’s) (Rogers, Galkowski, & Owens, 2007). The motivation
for using 2D systems stems from the observation that the
unstable behavior remains undetected in traditional approaches,
e.g., as the lifted/supervector approach in Norrlöf and Gunnarsson
(2002). Stability conditions are developed using 2D systems
theory. Solutions are presented and analyzed using these stability
conditions. The analysis is illustrated through an application
example in printing systems. In addition, it can be shown that
the related approach in Wallén et al. (2011) can be analyzed in
the developed framework as a special case. Finally, the developed
theory also leads to new results for the traditional ILC case where
the performance variables are equal to the measured variables in
the common situation where the feedback controller contains an
integrator.
Notation. Z∗ (Z+) denotes the set of positive (non-negative)
integers. Discrete-time is denoted with p ∈ Z, k ∈ Z is
the trial index. For A ∈ Cn×n, ρ(A) = max1≤i≤n |λi|, with
λ = {λ0, λ1, . . . , λn} the spectrum of A. Systems are discrete-

time, for a system G,G :=


AG BG

CG DG


denotes a state-space

representation with state xG, which is often assumedminimal. The
real-rational transfer function for G is given by G(z) = CG(zI −

AG)−1
+DG, with z a complex indeterminate and G ∈ Rny×nu . Over

a finite-time interval 0 ≤ p < α, α ∈ Z+, the input–output
behavior of G can be denoted as ȳ = Ḡū with Ḡ ∈ Rαny×αnu

a Toeplitz matrix that contains the impulse response coefficients
h(p), where h(p) = CG(AG)p−1BG for p > 0 and h(0) = DG,
with h(p) ∈ Rny×nu (Norrlöf & Gunnarsson, 2002). The input ū ∈

Rαnu and output ȳ ∈ Rαny . Single-input single-output systems are
assumed throughout to facilitate the presentation. The extension
tomultivariable systems is conceptually straightforward andmany
of the results in Sections 3 and 4 directly apply.

2. Problem definition and application motivation

First, the control setup is motivated from an application
perspective. Next, the considered problem is presented.

2.1. Application motivation and control setup

Printing systems are an important examplewhere performance
variables cannot be measured directly in real-time. The paper po-
sitioning drive of a printer, see Fig. 1, is traditionally controlled
through feedback using inexpensive encoder position measure-
ments. High tracking accuracy using the encoder measurement y
does not imply good printing performance z due tomechanical de-
formations in the drive.

Recently, a scanner has been mounted in the printhead, which
enables line-by-line measurements of the printing performance
z (Bolder, Oomen, Koekebakker, & Steinbuch, 2014). This direct
measurement of the performance is not available to real-time
feedback, but can directly be used for batch-to-batch control
strategies including Iterative Learning Control (ILC). This leads to
the situation where the variables for feedback control y are not
equal to variables for ILC z, see Fig. 2. Here,


zk yk

T
= Puk.

System P has two outputs: the performance variable zk and the
measured variable yk. The input to the system equals uk = uC

k + fk.

Fig. 1. Side-view of the positioning drive in a printer. The paper position z
is controlled using the motor. The feedback controller uses real-time encoder
measurements y. The performance z is measured line-by-line using the scanner.

Fig. 2. Traditional feedback control setup.

Here, uC
k (r, yk) is the feedback control signal. In traditional printing

systems, it is assumed that yk ≈ zk, in which case a feedback
controller is implemented as uC

k = C(r−yk), with C assumed fixed
and designed such that the closed-loop system is internally stable.
In the setting considered in the present paper, the feedforward
signal fk results from a batch-to-batch control algorithm. For
instance, standard ILC approaches (Bristow et al., 2006) consider
an algorithm of the form

fk+1 = Q (fk + Lezk), (1)

where ezk = r − zk, L is a learning filter, Q is a robustness filter,
and k is the trial index. Appropriate substitution of ezk in (1) using
P = [Pz Py]T , zk = Pzuk, uk = Ceyk + fk, eyk = r − yk, and yk =

Pyuk leads to iteration domain dynamics fk+1 = Q (1 − LJ) fk +

L (1 − JC) r, where

J =
Pz

1 + CPy
. (2)

Next, a simplified inferential ILC example is presented.

2.2. Illustrative example

In the following example, it is shown that using the traditional
ILC approach of Bristow et al. (2006) in the batch-to-batch
inferential setting where yk ≠ zk can lead to an undesirable
situation.

Example 1. Let

P =


Pz

Py


=


1
3


and C =


1 1
0.5 0


.

Thus, P is a static system and C an I-controller. The stable closed-
loop system is given by

zk
yk


=

 −0.5 1 3
−0.5
−1.5

0 1
0 3

 
r
fk


.

Next, an ILC algorithm (1) is designed following Bristow et al.
(2006) and Norrlöf and Gunnarsson (2002), with Q = 1 and L such
that the trial-to-trial dynamics converge. The converged command
signal f∞ is given by

f∞ = lim
k→∞

fk+1 = (1 + CPy
− CPz)Pz−1

r, (3)
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