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a  b  s  t  r  a  c  t

In  this  work,  we  introduce  two  novel  methodologies  to  compute  the  envelope  of  superficial  electromyo-
graphy  signals.  Our methods  are  based  on the  detection  of activation  and  deactivation  patterns  using  a
change-point  approach  on  the  variances  of  the  sample.  More  concretely,  an  iterative  algorithms  is pro-
posed  to select  the  change-points  between  two  segments  of the  signal  based  on  some  local  statistics
introduced  in  this  work.  The  signal  is split  up into  two segments,  and  a new  search  for  change-points  is
recursively  conducted  in  each  subsequence.  The  change-points  make  possible  to calculate  local  envelopes
which  reflect  the  shape  of  the  signal  without  ignoring  the  activation  and  deactivation  landmarks.  Two
methods  are  proposed  in  this  work,  and  the  improvements  with  respect  to methodologies  available  in
the  literature  are  shown  using  both  synthetic  and  real  data. A  thorough  analysis  of the  techniques  is
performed  to that  end.

© 2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Electromyography (EMG) signals are an important topic of
active research in view of their wide range of medical applications.
For example, EMG  signals have been classified using different cri-
teria in order to diagnose neuromuscular disorders [1], they have
been used as a tool in the evaluation of generalized tonic–clonic
seizure semiology [2], in the recognition of emotions using facial
recordings and statistical methods [3], in the automatic control of
upper limb prosthesis [4], as a criterion to determine the differences
in lower-extremity muscular activation walking between older and
young adults [5], in the investigation of neck and shoulder muscle
activity of orthodontists in natural environments [6] and as a mech-
anism to measure shoulder muscle fatigue during repetitive tasks
[7] among other interesting biomedical applications.

It is important to recall that EMG  signals are measurements of
the difference of electric potentials between two electrodes. In turn,
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these measurements are highly correlated to the intensity in mus-
cular activity [8]. There are various well-established procedures to
record EMG  signals, one of them is called superficial electromyog-
raphy (sEMG), which consists in placing the electrodes over the skin
covering the muscle of interest using a conductive gel to get better
data readings [9]. An sEMG signal is essentially a random station-
ary temporal series in which the activity of the measured muscle is
reflected as an increase in the signal amplitude (also called a ‘burst’
in this work). Muscular activity may  be identified by finding the
localization, duration, shape and amplitude of those bursts in the
electric signal.

Beforehand we  must recall that there are various approaches
to investigate EMG  signals from an automatic point of view. For
instance, the recent literature shows progresses on de-noising tech-
niques to remove electric interferences in EMG  signals [10], on
the efficient decision-tree algorithms for the classification of EMG
signals using the discrete wavelet transform [11], on the use of two-
directional two-dimensional principal component analysis based
on stationary wavelets for EMG  signals [12] and on the detec-
tion of activation/deactivation patterns in EMG  signals with two
[13] or more levels of electric activity [14]. However, the meth-
ods have sometimes limited applicability, and there are still many
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Fig. 1. Envelopes for the same EMG  signal calculated using moving averages (top),
root-mean squares (middle) and the Butterworth low-pass filter (bottom). The signal
is  depicted in gray while the calculated envelope is shown as a thick dark blue line.
In  all three cases, the black rectangles around sample 10,000 show failures of the
methods in the detection of the end of a burst. (For interpretation of the references
to  color in text/this figure legend, the reader is referred to the web  version of the
article.)

open problems in the development of robust methodologies for the
investigation of EMG  signals.

As an example on the limitations of some of the methodolo-
gies available in the literature, recall that one way to recover
the signal burst shape is by computing its envelope. The most
common methods to compute envelopes are using moving aver-
ages [15,16], root-mean squares [17,18] and Butterworth low-pass
filters [19,20]. However, it is important to point out that these
methods lack effectiveness in detecting the beginning and the end
of the bursts, and that this problem becomes more evident when
one tries to obtain a smooth envelope. More concretely, this short-
coming appears when the window size is increased in the case of
moving averages or root-mean squares, and when the cut frequency
is decreased in the case of Butterworth low-pass filters.

For illustration purposes, Fig. 1 shows the limitations inher-
ent to the calculation of envelopes using moving averages (top),
root-mean squares (middle) and the Butterworth low-pass filter
(bottom). In that figure, envelopes were calculated for the same
EMG signal using the procedures described above. The signal is
shown in gray while the envelope is depicted in dark blue. The
black rectangles enhance the points of the temporal series where
the methods fail to detect correctly the end of an activation period.
Obviously, this is a strong limitation of these techniques which
merits a closer attention.

In the present work, we will propose two methodologies to com-
pute the envelope of an EMG  signal for which the start and the
end of the burst do not vanish. As some papers available in the
literature [21,22], our approach will be based on the calculation of
statistics that are computed ‘locally’ around the points in the signal.
The notion of locality in our context will hinge basically on suitable
neighborhoods of points for which the variance has no statistical
difference. In order to identify segments in the temporal series with
similar variance we will employ an iterative algorithm to detect all
the change-points on the variances. Some illustrative simulations
will establish the effectiveness of the proposed methodology.

This paper is organized as follows. Section 2 introduces the
nomenclature employed throughout this work along with the
change-point model proposed and the corresponding statistical
hypotheses. In turn, Section 3 will be devoted to develop an iter-

ative algorithm based on the change-point model. In Section 4 we
show some illustrative simulations using both experimental and
synthetic EMG  signals. For the sake of a more objective compar-
ison, we will contrast the performance of the proposed method
against others envelope techniques available in the literature. We
close this manuscript with a section of final remarks.

2. Mathematical model

Let n be a positive integer. Throughout we let x = {xi}ni=1 ⊆ R  be
a finite sequence which physically represents a sEMG signal (an
EMG  for short). More precisely, xi is a sample of the myoelectric
activity of a muscle recorded at the time ti for each i ∈ {1, . . .,  n}.
For practical purposes, the sequence {ti}ni=1 may  represent a uniform
partition of the temporal interval [0, T] with T > 0. For each i ∈ {1,
. . .,  n} let Xi be a normally distributed random variable with mean
equal to zero and variance equal to �2

i
, that is,

Xi∼N(0, �2
i ), ∀i ∈ {1, . . .,  N}. (1)

In this work, we  will suppose that x is a sample of the sequence of
random variables X = {X1, . . .,  Xn}.

In this section, we propose a change-point model for the vari-
ances of the signal in order to describe different activity levels of x.
Our approach hinges on the hypothesis that there exists M ∈ N  as
well as integer numbers

0 < k1 < · · · < kM+1 = n, (2)

called change-points.  Moreover, we will suppose that the variance
is constant between two  consecutive change-points, and that it
changes at each of them. Mathematically,{

H0 : �2
i

= �2
kj
, ∀kj ≤ i < kj+1, ∀j ∈ {1, . . .,  M − 1},

H1 : �2
kj

/= �2
kj+1
, ∀j ∈ {1, . . .,  M − 1}. (3)

It is worth noting that, in practice, the number of change-points
and their locations are not known a priori. In order to propose a
methodology to determine them, we consider firstly the case of a
single point (that is, when M = 1) and two possible scenarios: when
the location is know or unknown. In a second stage, we  will propose
an algorithm based on two new local statistics for the general case
when M ∈ N. All of this possibilities will be considered next.

2.1. One change-point with known location

Suppose that there is only one change-point, and assume that its
possible location is k ∈ {2, . . .,  n}. Throughout we let �2

k,L
represent

the common variance of the left subsequence {X1, X2, . . .,  Xk−1}, and
let �2

k,R
denote the common variance of the right subsequence {Xk,

Xk+1, . . .,  Xn}. In order to determine whether there is a significant
change in the variance at the time tk, the respective set of null and
alternative hypotheses is given by{

H0 : �2
k,L

= �2
k,R
,

H1 : �2
k,L

/= �2
k,R
.

(4)

The test statistic for the likelihood-ratio test is given by

Dk = −2 ln �k

= 2[n ln( �̂2) − k ln( �̂2
k,L

) − (n − k + 1) ln( �̂2
k,R

)],
(5)
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