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a b s t r a c t

This paper considers optimal output synchronization of heterogeneous linear multi-agent systems.
Standard approaches to output synchronization of heterogeneous systems require either the solution of
the output regulator equations or the incorporation of a p-copy of the leader’s dynamics in the controller
of each agent. By contrast, in this paper neither one is needed. Moreover, here both the leader’s and
the follower’s dynamics are assumed to be unknown. First, a distributed adaptive observer is designed
to estimate the leader’s state for each agent. The output synchronization problem is then formulated
as an optimal control problem and a novel model-free off-policy reinforcement learning algorithm is
developed to solve the optimal output synchronization problem online in real time. It is shown that this
optimal distributed approach implicitly solves the output regulation equations without actually doing so.
Simulation results are provided to verify the effectiveness of the proposed approach.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperative control of multi-agent systems has undergone a
paradigm shift from centralized to distributed, due to its reliability,
flexibility, scalability and computational efficiency. In distributed
control, each agent designs a controller based on limited informa-
tion about itself and its neighbors to assure all agents reach agree-
ment on certain quantities of interests (leaderless consensus) or all
agents follow trajectories of a leader node (leader–follower con-
trol). A rich body of literature has been developed on distributed
control of multi-agent systems. See for example Jadbabaie, Lin,
andMorse (2003), Lewis, Zhang, Hengster-Movric, and Das (2014),
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Olfati-Saber and Murray (2004), Ren and Beard (2008) and Ren,
Beard, and Atkins (2007) to name a few.

Most of the existing work on distributed control focuses
on state synchronization of homogeneous multi-agent systems
with identical dynamics. Distributed output synchronization of
heterogeneous systems, where the dynamics and dimension of
agents can be different, has also attracted attention (De Persis &
Jayawardhana, 2014; Huang&Chen, 2004; Huang, Ye, Hong,Wang,
& Jiang, 2013; Lunze, 2012; Peymani, Grip, Saberi, Wang, & Fosson,
2014; Wieland, Sepulchre, & Allgöwer, 2011; Xiang, Wei, & Li,
2009; Yang, Saberi, Stoorvogel, & Grip, 2014). Existing mentioned
methods, however, require complete knowledge of the agents and
the leader’s dynamics which is not available in many real-world
applications.

Adaptive distributed controllers have been developed to
cope with system uncertainties in the dynamics of the agents
(Das & Lewis, 2010; Ding, 2015). Adaptive methods can only
guarantee a bounded synchronization error and not asymptotic
synchronization. This is because existing adaptive methods do not
solve the output regulation equations, which is a necessary and
sufficient condition to assure perfect synchronization. Moreover,
they do not converge to an optimal distributed solution. Robust
controllers, on the other hand, require the nominal model of the
agents and full knowledge of the leader dynamics. Suboptimal
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and optimal distributed controllers are also designed in Cao and
Ren (2010), Vamvoudakis, Lewis, and Hudas (2012), Zhang, Feng,
Liang, and Luo (in press) and Zhang, Lewis, and Das (2011) for
linear homogeneous systems. Thesemethods, however, are limited
to state synchronization and they require complete knowledge of
the agents and the leader. To our knowledge distributed adaptive
optimal output synchronization is not considered in the literature.

Over the last decades there has been increasing interest in
developing themulti-agent learning systems so as to create agents
that can learn from experience how to interact with other agents
in a best possible way (Busoniu, Babuska, & De Schutter, 2008;
Chang, 2009; Lakshmanan & Farias, 2006). Reinforcement learning
(RL) techniques have been used as promising methods to design
adaptive optimal controllers for both single-agent andmulti-agent
systems.

In this paper, a reinforcement learning (RL) algorithm is
developed to solve the output synchronization of heterogeneous
systems. It is shown that the explicit solution to the output
regulator equation is not necessary, hence the agents do not need
to know the leader’s dynamics. The key components of the given
method are:
(1) Optimality is explicitly imposed in solving the output synchro-

nizationproblem. This allows theuse of RL to solve the problem
in real time.

(2) A novel off-policy RL algorithm is developed to solve the output
synchronization problem online in real timewithout requiring
any knowledge of the agent’s or the leader’s dynamics.

(3) It is shown that this distributed RL approach implicitly solves
the output regulation equationswithout actually solving them.

(4) A model-free distributed adaptive observer is designed to
estimate the leader’s state.

The distributed observer gives the feedforward state, which is
used along with the local feedback state of each agent to design
a local control protocol. A local discounted performance function
is defined for each agent, its minimization gives both feedback
and feedforward controllers. Online solution to the minimization
problem is then found by using an off-policy RL algorithm. This
algorithm does not require any knowledge of the dynamics of the
agents and uses only the measured data of the system and the
reference trajectories to find the optimal distributed solution to the
output synchronization problem.

2. Theoretical background

In this section, the essential theoretical background on graph
theory is provided. The problem of output synchronization for
heterogeneous multi-agent systems is also defined.

2.1. Graph theory

A weighted directed graph (digraph) is defined as G =

(V, E, A), where V = (v1, v2, . . . , vN) is a set of N nodes,
E ⊂ V × V is a set of edges, and A = [aij] ∈ RN×N is the
associated adjacency matrix with aij > 0 only if (vj, vi) ∈ E ,
and aij = 0 otherwise. The neighbor set of node i is depicted by
Ni = {j|(vj, vi) ∈ E}. The in-degree of a node i is defined as
di =

N
j=1 aij and in-degree matrix as D = diag [di] ∈ RN×N . The

graph Laplacian matrix is defined as L = D − A. A graph is said
to be undirected if the graph Laplacian is symmetric, i.e., L = LT .
For a given digraph G, a sequence of successive edges in the form
((vi, vk), (vk, vl), . . . (vm, vj)) gives a directed path from node i to
node j. A diagraph is said to have a spanning tree if there exists
a root node ir , such that there is a directed path from ir to every
other node in the graph. A weighted directed graph is called detail
balanced if there exist scalars pi > 0, pj > 0 such that piaij = pjaji
for all i, j ∈ N (Lewis et al., 2014).

Assumption 1. The digraph G has a spanning tree and the leader
is pinned to at least one root node.

The leader can be pinned to multiple nodes in the graph. This
results in a diagonal pinning matrix G = diag[gi] ∈ RN×N with
gi > 0 if the node has access to the leader, and zero otherwise.
Under the above assumption, the eigenvalues of L+G have positive
real parts (Grip, Yang, Saberi, & Stoorvogel, 2012; Hong, Chen, &
Bushnell, 2008; Hong, Hu, & Gao, 2008; Li, Duan, Chen, & Huang,
2008).

2.2. Output synchronization of heterogeneous multi-agent systems

Let the leader dynamics be given by

ζ̇0 = S ζ0 (1)

where ζ0 ∈ Rp is the reference trajectory to be followed by
followers, and S ∈ Rp×p is the leader’s dynamic matrix. Using the
output matrix R ∈ Rq×p, the output of the leader y0 ∈ Rq is

y0 = R ζ0. (2)

Assumption 2. All eigenvalues of the leader dynamic S are on the
imaginary axis and they are non-repeated.

The dynamics of N linear heterogeneous agents is given by

ẋi = Ai xi + Bi ui

yi = Ci xi
(3)

where xi ∈ Rni is the system state, ui ∈ Rmi is the input and yi ∈ Rq

is the output for agent i.

Assumption 3. (Ai, Bi) is stabilizable and (Ai, Ci) is observable.

Problem 1 (Output Synchronization). Design local control proto-
cols ui such that the outputs of all agents synchronize to the output
of the leader node. That is, yi(t) − y0(t) → 0, ∀i.

To solve Problem 1, standard methods in the literature require
solving the output regulation equations given by

AiΠi + BiΓi = ΠiS
CiΠi = R

(4)

where Πi ∈ Rni×p and Γi ∈ Rmi×p for i = 1, . . . ,N are solutions
to (4). Based on these solutions, the following control protocol
guarantees output synchronization (Grip et al., 2012; Su, Hong, &
Huang, 2013; Yang et al., 2014)

ui = K 1i (xi − Πiζi) + Γiζi (5)

where K 1i ∈ Rmi×ni is the state-feedback gain which stabilizes
Ai + BiK 1i. Moreover, ζi is the estimate of the leader trajectory ζ0
for agent i and is given by Jiao, Liu, Lewis, Xu, and Xie (2015)

ζ̇i = S ζi + c


N
j=1

aij(ζj − ζi) + gi(ζ0 − ζi)


(6)

where c is the coupling gain.

Remark 1. Note that the solution to the output regulator equation
(4) requires the complete knowledge of the leader and the
agents’ dynamics. In order to obviate this requirement, a model-
free distributed adaptive observer is first designed in this paper
to estimate the leader’s state ζ0. Then, a model-free off-policy
reinforcement learning algorithm is developed to solve the optimal
tracking problem online in real time.
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