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a b s t r a c t

This paper considers the problem of asymptotic stability for linear time-varying systems of the form
ẋ(t) = A(t)x(t). Some new stability conditions are proposed. First, two stability conditions for nonlinear
time-varying systems are given by using non-monotonic Lyapunov functions. Then the results obtained
are extended to the linear case, two stability conditions with infinite integral are derived. Furthermore,
by using the top-floor function, a linear matrix inequalities (LMI) condition and an eigenvalue criterion
for asymptotic stability of systems are presented. Comparing with the existing results, the conditions
obtained allow both A(t) and Ȧ(t) are unbounded at t = +∞. Some numerical examples are provided to
show the effectiveness of the theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The stability of linear time-varying (LTV) systems has been an
active research field in science and engineering for many years.
While important, LTV systems are very hard to investigate despite
the fundamental stability problem. It is well known that, a linear
time invariant system is stable if the eigenvalues have negative real
part. However, for linear time-varying systems, even though all the
pointwise eigenvalues have negative real parts (Rosenbrock, 1963;
Rugh, 1993), the time-varying system still may be unstable. Thus
the stability problem of LTV systems is much more complicated
than that of linear time invariant systems.

Numerous important results, including but not limited to
Amato, Celentano, and Garofalo (1993), Desoer (1969), Garcia,
Peres, and Tarbouriech (2010), Guo and Rugh (1995), Ilchmann,
Owens, and Prätzel-Wolters (1987), Jetto and Orsini (2009),
Kamen, Khargonekar, and Tannembaum (1989), Krause and Kumar
(1986), Mullhaupt, Buccieri, and Bonvin (2007), Solo (1994) and
Tan and Duan (2009), have been obtained through the efforts
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of researchers. It is worth noting that most of existing stability
assessment methods (Amato et al., 1993; Desoer, 1969; Guo &
Rugh, 1995; Ilchmann et al., 1987; Kamen et al., 1989; Krause
& Kumar, 1986; Mullhaupt et al., 2007; Rosenbrock, 1963;
Solo, 1994) tend to take the pointwise stability as a necessary
precondition, or impose some ‘‘slowly varying’’ conditions to the
system, i.e., impose a bound on ∥Ȧ(t)∥. In addition,most of existing
results (Amato et al., 1993; Desoer, 1969; Garcia et al., 2010;
Guo & Rugh, 1995; Ilchmann et al., 1987; Jetto & Orsini, 2009;
Kamen et al., 1989; Krause & Kumar, 1986; Mullhaupt et al., 2007;
Rosenbrock, 1963; Solo, 1994; Tan & Duan, 2009) also require A(t)
to be bounded, i.e., ∃ ξ > 0 such that ∥A(t)∥ ≤ ξ for t ≥ 0.

In this paper, wewill remove these restrictions to study the sta-
bility for a class of LTV systems, where both A(t) and Ȧ(t) may be
unbounded at t = +∞. The main contributions of this paper in-
clude some new stability conditions: (i) two stability conditions for
nonlinear time-varying systems are given by using non-monotonic
Lyapunov function, (ii) two stability conditions with infinite in-
tegral for LTV systems are derived, and (iii) a LMI condition and
an eigenvalue criterion for asymptotic stability of LTV systems are
presented by using the top-floor function.

2. Preliminaries

Let R denote the set of real numbers, R+
= [0, +∞), Rn be

the n-dimensional real space, C[R+, R+
] be the set of continuous

maps from R+ to R+. A function w ∈ C[R+, R+
] is said to belong to

class K , if w(0) = 0 and w is strictly increasing. ∥x∥ denotes the
Euclidean normof x. ∥A∥ denotes the induced normofmatrix A. For
an n × n real symmetric matrix A, λi(A), 1 ≤ i ≤ n, denotes the
ith eigenvalue ofmatrix A. Specially, λmax(A) and λmin(A) represent
themaximum andminimum eigenvalues of matrix A, respectively.
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3. Stability conditions for nonlinear time-varying systems

Consider the following nonlinear time-varying system:

ẋ(t) = f (t, x(t)), t ≥ t0 (1)

where t0 ≥ 0 and initial condition x0 = x(t0), where x(t) ∈ Rn is
the state of systems, f : R+

× Rn
→ Rn is a continuous function

satisfying f (t, 0) = 0 for all t ≥ t0.

Definition 1 (Khalil, 2002). The system (1) is said to be:

• Lyapunov stable if for each ε > 0, there is δ(ε, t0) > 0 such that

∥x(t0)∥ < δ ⇒ ∥x(t)∥ < ε, ∀t ≥ t0 ≥ 0. (2)

• uniformly stable if for each ε > 0, there is δ = δ(ε) > 0,
independent of t0, such that (2) is satisfied.

• asymptotically stable if it is Lyapunov stable and there is a
constant c = c(t0) > 0 such that x(t) → 0 as t → ∞, for
all ∥x(t0)∥ < c .

• uniformly asymptotically stable if it is uniformly stable and there
is a constant c > 0, independent of t0, such that for all ∥x(t0)∥ <
c, x(t) → 0 as t → ∞, uniformly in t0; that is, for each η > 0,
there is T = T (η) > 0 such that

∥x(t)∥ < η, ∀t ≥ t0 + T (η), ∀ ∥x(t0)∥ < c. (3)

• exponentially stable if there exist positive constants c, k and a
such that

∥x(t)∥ ≤ k ∥x(t0)∥ e−a(t−t0), ∀ ∥x(t0)∥ < c. (4)

Lemma 1. Consider the system (1). Suppose there exist a continu-
ously differentiable function V : R+

× Rn
→ R+ with V (t, 0) = 0

for t ≥ t0, a class-K function α, a function w ∈ C[R+, R+
] with

w(0) = 0, a constant η > 0, a positive definite function r, and a
continuous function g : R+

→ R such that

(1) α (∥x(t)∥) ≤ V (t, x),
(2) V (t, x) ≤ w(V (t0, x(t0))),
(3) V̇ (t, x) ≤ g(t)r(V (t, x)) with


+∞

t0
g(t) dt = −∞,

for any ∥x(t0)∥ < η. Then the system (1) is asymptotically stable.

Proof. Lyapunov stability: For any given ε > 0, it follows from
the definitions of V and w that there exists a sufficiently small
0 < δ(ε, t0) < η such that

w(V (t0, x(t0))) ≤ α(ε)

for all ∥x0∥ ≤ δ. Combining conditions (1) and (2), we have

α (∥x(t)∥) ≤ V (t, x) ≤ w(V (t0, x(t0))) ≤ α(ε)

for t ≥ t0, i.e, ∥x(t)∥ ≤ ε, t ≥ t0, and hence the system (1) is
Lyapunov stable.
Asymptotic convergence: By using the contradiction and condition
(3), we have that the system (1) is asymptotically stable. This
completes the proof.

Lemma 2. Consider the system (1). Suppose there exist a continu-
ously differentiable function V : R+

× Rn
→ R+ with V (t, 0) = 0 for

t ≥ t0, a class-K function α, and a continuous function g : R+
→ R

such that

(1) α (∥x(t)∥) ≤ V (t, x),
(2) V̇ (t, x) ≤ g(t)V (t, x) with


+∞

t0
g(t) dt = −∞.

then the system (1) is asymptotically stable.

Proof. Lyapunov stability: It follows from condition (2) that

V̇ (t, x)
V (t, x)

≤ g(t). (5)

By integrating both sides of (5) from t0 to t , we obtain t

t0

V̇ (s, x(s))
V (s, x(s))

ds ≤

 t

t0
g(s) ds. (6)

That is,

V (t, x) ≤ V0e
 t
t0

g(s) ds
. (7)

Let G(t) =
 t
t0
g(s) ds, then it follows from the definition of g and

condition (2) thatG(t) is continuous andG(t) → −∞ as t → +∞,
which means that for a given a > 0, there exists a T ≥ t0 such that
G(t) ≤ −a for t ≥ T .

Let A = maxt0≤t≤T {G(t)} and B = max{−a, A}, then it follows
from (7) that

V (t, x) ≤ V0e
 t
t0

g(s)ds
= V0eG(t)

≤ V0eB (8)

for t ≥ t0. Now for any given ε > 0, it follows from the definitions
of V and B that there exists a δ(ε) > 0 such that

V0eB ≤ α(ε) (9)

for ∥x0∥ ≤ δ. Combining (8), (9) and condition (1), we have

α (∥x(t)∥) ≤ V (t, x) ≤ V0eB ≤ α(ε) (10)

which implies that ∥x(t)∥ ≤ ε, t ≥ t0.
Asymptotic convergence: It follows from condition (2) and (7) that
V (t, x) → 0 as t → +∞, i.e., the system (1) is asymptotically
stable. This completes the proof.

Remark 1. The conventional Lyapunov stability theory requires
the Lyapunov function V (t, x) of systems is monotonic decreasing
to ensure the asymptotic stability of systems. However, Lemma 2
(or Lemma 1) only needs the derivative of V (t, x) satisfies the
condition (2) (or condition (3)), which allows V (t, x) to be
increasing on some time intervals. Therefore the conditions of
Lemma 2 (or Lemma 1) are less conservative than that of the
conventional Lyapunov stability theory.

Example 1. Consider the nonlinear time-varying system given by

ẋ(t) = 0.1(sin t − 0.8)x3(t), t ≥ t0 (11)

where t0 ≥ 0 and 0 ≤ x0 ≤ 1. Let V (t, x) = x2(t), α (s) =
1
2 s

2, w(s) = 2s, g(t) = 0.2(sin t − 0.8) and r(s) = s2, then we
have

V̇ (t, x) = 0.2(sin t − 0.8)x4(t) = g(t) · r(V (t, x)) (12)

and


+∞

t0
g(t) dt = −∞, which means that the system (11) is

asymptotically stable from Lemma 1. Choosing t0 = 0 and x0 = 1,
the state x(t) of systems versus time is shown in Fig. 1.

In fact, the explicit solution of (11) is:

x(t) =
x0

1 + 0.2x20 (cos t − cos t0 + 0.8(t − t0) − 1)

for t ≥ t0.

Remark 2. The stability of the system (11) cannot be easily studied
by the conventional Lyapunov stability theory since it is difficult
to construct a monotonic decreasing Lyapunov function for the
system (11).



Download English Version:

https://daneshyari.com/en/article/695078

Download Persian Version:

https://daneshyari.com/article/695078

Daneshyari.com

https://daneshyari.com/en/article/695078
https://daneshyari.com/article/695078
https://daneshyari.com

