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a b s t r a c t

The importance of static output feedback (OPFB) design for aircraft control, process control, and elsewhere
has been well documented since the 1960s, since full state measurements are not usually available in
practical systems. This problem is compounded in the case of multi-agent systems (MAS) where each
agent has its own state variable and measured outputs. Therefore, this paper addresses the L2-gain OPFB
synchronization of linear MAS subject to external disturbances. Both homogeneous and heterogeneous
MAS are considered. For homogeneous MAS, it is shown that the L2-gain static OPFB synchronization
problem of MAS can be cast into the L2-gain static OPFB problem for a set of decoupled systems that
depend on the graph topology. A modified Riccati equation is introduced which gives the OPFB gain
and the coupling gain of the proposed static OPFB control protocol. For heterogeneous MAS, it is shown
that the L2-gain synchronization problem can be cast into the L2-gain static OPFB problem of a set of
decoupled systems plus a coupling condition on their dynamic compensators that depends on the graph
topology. A certain novel gainmatrix is introduced in the dynamics of the control protocol to improve the
performance.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed control of multi-agent systems (MAS) on
communication graphs has been well studied in the literature (Fax
& Murray, 2004; Jadbabaie, Lin, & Morse, 2003; Lewis, Zhang,
Hengster-Movric, & Das, 2014; Olfati-Saber & Murray, 2004; Qu,
2009; Ren & Beard, 2007), due to its potential applications in a va-
riety of engineering systems. A control law, which depends only
on the local neighbor information, is designed for each agent to
make the network of agents converge to a common value of inter-
est. If the common value that agents agree on is not prescribed, the
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problem is called regulation, and if all agents follow the trajectory
of a leader node, the problem is known as leader–follower control
(Hong, Hu, & Gao, 2006; Ren, Moore, & Chen, 2007).

The design of distributed control protocols forMASwith general
linear dynamics has been considered in the literature (Li, Duan,
Chen, &Huang, 2010;Ni & Cheng, 2010; Zhang, Lewis, &Das, 2011).
However, attenuating the effect of the disturbance on the system
performance is ignored in most existing methods. The disturbance
rejection for MAS has been formulated as an H∞ control problem
in Lin, Jia, and Li (2008), Li, Duan, and Chen (2010) and Li, Duan, and
Chen (2011) under a leaderless framework. Conditions in terms
of linear matrix inequalities were given to ensure consensus with
a desired H∞ performance. Existing methods, however, mostly
require the knowledge of the relative states between neighboring
agents, which may not be available for measurement.

The importance of output feedback (OPFB) design, particularly
static output feedback (Syrmos, Abdallah, Dorato, & Grigoriadis,
1997), for aircraft control (Stevens & Lewis, 2003), optimal process
control (Lewis, Vrabie, & Syrmos, 2012), and elsewhere has been
well documented since the 1960s, since full state measurements
are not usually available in practical systems. This problem is
compounded in the case ofMASwhere each agent has its own state
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variable andmeasured outputs. Therefore, this paper addresses the
L2-gain OPFB synchronization of linear MAS subject to external
disturbances.

To obviate the requirement for full state measurements,
distributed observer-based OPFB and distributed dynamic OPFB
protocols were derived in Liu and Jia (2010), Liu, Jia, Du, and Yuan
(2009) and Zhao, Duan, Wen, and Chen (2012) for H∞ control. For
the leader–follower systems, distributed state-feedback protocols
were designed in Liu and Lunze (2014) andWen, Duan, Li, and Chen
(2012), and a distributed observer-type protocol was presented
inHong, Chen, and Bushnell (2008). The above techniques assumed
homogeneousMAS, that is, all agents have identical dynamics. The
heterogeneous case, where agents can have different dynamics,
has been considered by Lunze (2012), Su and Huang (2012)
and Wieland, Sepulchre, and Allgöwer (2011). It is shown that
each agent and its controller must contain an internal copy of
the leader’s dynamics. This work is based either on the output
regulator equations (Huang, 2004; Knobloch, Isidori, & Flockerzi,
1993) or the idea of p-copy (Huang, 2004). Some works have
been done on H∞ control for heterogeneous systems (Dullerud &
D’Andrea, 2004; Huang & Ye, 2014;Massioni, 2014; Peymani, Grip,
Saberi, Wang, & Fossen, 2014; Scorletti & Duc, 2001).

Although several OPFB control protocols are designed for
homogeneous MAS in the presence of disturbance, existing results
are mainly dynamic OPFB methods. The static OPFB problem for
single-agent systems is one of the most researched problems in
the control society. The use of static OPFB allows flexibility and
simplicity of implementation, and it is of extreme importance
in practical controller design applications (Lewis et al., 2012;
Stevens & Lewis, 2003). For disturbance-free case, decentralized
static OPFB stabilization and synchronization of networks were
studied in Menon and Edwards (2009). Static OPFB protocols are
derived for consensus (Ma & Zhang, 2010) and synchronization
of homogeneous MAS in the presence of disturbances (Hengster-
Movric, Lewis, & Sebek, 2015). Moreover, for heterogeneous MAS,
the design of a dynamic OPFB protocol has been considered for the
casewhere the disturbances in the dynamics of the follower agents
are generated by the leader.

In this paper, the distributed control of leader–follower prob-
lem subject to external disturbances using OPFB is considered. A
complete approach to OPFB design is given for both homogeneous
and heterogeneous MAS. For the homogeneous MAS, it is shown
that this problem can be cast into the L2-gain static OPFB prob-
lem for a set of decoupled systems. A modified algebraic Riccati
equation (ARE), which takes into account the spectrum property
of the communication topology, is introduced. For the heteroge-
neousMAS, amodified dynamic OPFB control protocol is employed
to solve the boundedL2-gain synchronization problem. It is shown
that the L2-gain synchronization problem of heterogeneous MAS
can be cast into the L2-gain static OPFB problem of a set of decou-
pled systems plus a coupling condition on their dynamic compen-
sators that depends on the graph topology. It is also shown that the
gains of the dynamic compensator can be found by solving AREs for
each agent.

2. Preliminaries and problem formulation

Throughout this paper, the following notations are used: A
matrix T ∈ Cn×n is unitary if T ∗T = TT ∗

= In. 1n ∈ Rn denotes the
vector whose elements are equal to 1. L2[0, ∞) denotes the space
of square integrable vector functions over [0, ∞). A⊗B denotes the
Kronecker product ofmatricesA and B. diag(A1, . . . , An) represents
a block diagonal matrix with matrices Ai, i = 1, . . . , n, on its
diagonal.

2.1. Graph theory

A directed graph G consists of a pair (V, E), where V =

{α1 , . . . , αN } is a finite nonempty set of nodes and E ⊆ V × V is a
set of ordered pairs of nodes, called edges. Denote the adjacency
matrix as A = [aij] with aij > 0 if (αi, αj) ∈ E and aij = 0
otherwise. The set of nodes αj with edges incoming to node αi is
called the neighbors of node i, namely Ni = {αj : (αj , αi) ∈ E}.
The graph Laplacian matrix is defined as L = D − A, which has
all row sums equal to zero. D = diag(di) is called the in-degree
matrix, where di =


j∈Ni

aij is the weighted in-degree of node i.
A (directed) tree is a connected digraph where every node except
one, called the root, has in-degree equal to one. A graph has a
spanning tree if a subset of the edges forms a directed tree.

Assumption 1. The digraph G contains a spanning tree and the
leader is pinned to a root node.

2.2. L2-gain OPFB synchronization for homogeneous multi-agent
systems

Consider N identical linear dynamic systems given by

ẋi = Axi + Bui + Dωi

yi = Cxi i = 1, . . . ,N, (1)

where xi(t) ∈ Rn, ui(t) ∈ Rp, ωi(t) ∈ Rm and yi(t) ∈ Rq are
the state, control input, external disturbance and output of node
i, respectively. A, B, C and D are constant matrices with C full row
rank. Let the leader dynamics be

ẋ0 = Ax0, y0 = Cx0 (2)

where x0(t) ∈ Rn is leader state and y0(t) ∈ Rq is the measured
output.

Define the local neighborhood error of the node i as

εyi =


j∈Ni

aij(yj − yi) + gi(y0 − yi) (3)

where gi ≥ 0 is called the pinning gain, with gi > 0 for a small
subset of agents having direct access to the leader. Consider the
static OPFB controller (Hengster-Movric et al., 2015) for each node
i as

ui = cKεyi (4)

where c > 0 is the coupling gain, and K ∈ Rp×q is the feedback
control gain matrix to be determined.

The synchronization error for agent i is defined as

δi = xi − x0. (5)

Let x = [xT1, . . . , x
T
N ]

T , x0 = (1n ⊗ In)x0 ∈ RnN , δ = [δT
1 , . . . , δ

T
N ]

T ,
ω = [ωT

1 , . . . , ω
T
N ]

T and εy = [εT
y1, . . . , ε

T
yN ]

T . Then the global
synchronization dynamics become

δ̇ = (IN ⊗ A − c(L + G) ⊗ BKC)δ + (IN ⊗ D)ω

εy = −

(L + G) ⊗ C


δ (6)

where G = diag(g1, . . . , gN) is the diagonal matrix of pinning
gains. Since L has all row sums equal to zero, one has L1 = 0 with
1 = [1, . . . , 1]T . Moreover, under Assumption 1, (L+G) is positive
definite.

Problem 1 (Bounded L2-gain Static OPFB Synchronization Problem
for Homogeneous MAS). Given N identical systems in (1) and a
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