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a b s t r a c t

This paper addresses the problem of designing a robust controller for a class of nonlinear systems
whose states cannot be precisely measured caused by the unknown drifts in the powers of the
measurement functions. By adopting the concept of homogeneity withmonotone degrees and revamping
the technique of adding a power integrator, a new design procedure is introduced to recursively construct
a generalized homogeneous controller with monotone degrees as well as a Lyapunov function with
unknown parameters. The proposed controller is able to globally stabilize a family of nonlinear systems
with differentmeasurement drifts whose bounds can be determined by solving an optimization problem.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the global control problem for a class
of nonlinear systems in the form

ẋi(t) = xi+1(t), i = 1, . . . , n − 1,
ẋn(t) = b(x(t))u(t) + a(x(t)),

yj(t) = x
1+εj
j (t), j = 1, . . . , n, (1)

where x(t) = (x1(t), . . . , xn(t))T ∈ Rn, u(t) ∈ R and yj(t)’s
are the system states, the control input and the measurements
of system states, respectively. The uncertain nonlinear function
a(·) : Rn

→ R is a C1 function with a(0) = 0 and b(·) : Rn
→ R

is a continuous function. For j = 1, . . . , n, the drift εj in the power
of the measurement function x

1+εj
j is an unknown ratio of an even

integer and an odd integer.
In decades, the control problem for nonlinear systems has

attracted a great deal of attention andmany important results have
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been achieved (Dashkovskiy & Pavlichkov, 2012; He, Chen, & Yin,
2016; He, Dong, & Sun, 2016; Isidori, 1995; Praly, Andrea-Novel, &
Coron, 1991; Tsinias, 1995a,b). For system (1), which represents an
important class of nonlinear systems, namely feedback linearizable
systems, the backstepping method (Kanellakopoulos, Kokotovic, &
Morse, 1991) is known as an effective way for the state-feedback
controller design, whose basic idea is to cancel the nonlinear terms
via feedback. Therefore, this method requires the whole system
to be fully known. Different from the backstepping method, the
work (Lin & Qian, 2000; Qian & Lin, 2001) introduced the adding
a power integrator technique, which relies on dominating, instead
of cancelling the nonlinear terms. With this new tool, numerous
stabilization results have been achieved for nonlinear systemswith
various structures and restrictions, for example, Back, Cheong,
Shim, and Seo (2007), Fu,Ma, andChai (2015), Zhai andQian (2012)
and the references therein.

It is demonstrated in Rosier (1992) that homogeneous systems
inherit some nice properties from linear systems and provide us
a new viewpoint to deal with the nonlinear systems (Kawski,
1990). However, the traditional definition for the homogeneous
system with the uniformed degree can only encompass a small
part of nonlinear systems. The recent work (Polendo & Qian,
2008) introduced a generalized homogeneity named homogeneity
with monotone degrees (HWMD), which not only relaxes the
restrictions on the uniformed homogeneity, but also leads to new
controllers with better smoothness (Tian, Zhang, Qian, & Li, 2014;
Zhang, Qian, & Li, 2013).

In practice, it is common that the sensors are not able to
measure the system states accurately, e.g., the power drift εi in (1)
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may not be zero. For instance, as shown in Application Note for an
Infrared (0000); Zhai and Qian (2012), the voltage output from an
infrared distance sensor is a nonlinear function. A typical sensor for
the real distance d only outputs dp where the constant p is around
0.8 but its precise value is varying from products to products (Fig.
5 in Application Note for an Infrared (0000)). For example, if such a
distance sensor is applied to the system of a particle moving under
nonlinear viscous friction (Gong & Qian, 2007),

ẋ1 = x2, ẋ2 = u − sign(x2)|x2|α, 1 ≤ α ≤ 5/3 (2)

i.e., y1 = x1+ε1
1 for an unknown constant ε1, the stabilization prob-

lembecomes challenging.Motivated by this practical example, this
paper aims to address the global control problem for a class of non-
linear systems with unknown measurement drifts. The main ob-
stacles lie in two aspects: (ı̇) With uncertain εi’s, it is impossible
to use the real information of system states xi’s to design the con-
troller. (ı̇ı̇) The first derivative of the measurement function y1(x1)
does not exist at the point x1 = 0 for a negative offset ε1. This
new obstacle cannot be handled by the method in Zhai and Qian
(2012) where global stabilization is achieved under the condition
that ∂y1(x1)

∂x1
is bounded.

Due to the aforementioned difficulties, the existing results
cannot be used to solve the global stabilization problem for system
(1). In this paper, we first identify the condition on the power
drifts εi’s such that the system is homogeneous with monotone
degrees. Moreover, we provide a detailed selection process of the
HWMD weights ri’s which can now contain unknown parameters.
Then, by generalizing the adding a power integrator technique, a
robust controller, which only utilizes the measurements of system
states, is recursively constructed to render the closed-loop systems
globally asymptotically stable.

2. Preliminaries and assumptions

The objective of this paper is to design a controller using the
drifted measurement yi = x1+εi

i for unknown εi’s. To begin with,
we revisit the recent definition of HWMD.

Definition 2.1 (HWMD Polendo & Qian, 2008). A continuous vector
field f (x) = [f1(x), . . . , fn(x)]T , x = (x1, . . . , xn) ∈ Rn, is said
to be homogeneous with monotone degrees, if there are positive
real numbers (r1, . . . , rn) and τ1 ≥ τ2 · · · ≥ τn > −rn, such
that ∀x ∈ Rn

\{0}, ∀ϵ > 0, fj(ϵr1x1, . . . , ϵrnxn) = ϵτj+rj fj(x),
j = 1, . . . , n. The constants ri’s and τi’s are called homogeneous
weights and degrees respectively.

Next we impose a condition on the power drifts εi’s.

Definition 2.2. The power drift upper-bound ε∗(n) for an n-
dimensional system is chosen as ε∗(1) = ε∗(2) = 1 and when
n ≥ 3 the solution of the following problem.

Problem 2.1.

Max ε

s.t. an−1 = 2, ai+1(2 − ai) =

1 + ε

1 − ε

2
,

ai ≥ 0, ε ≤ 1, 1 ≤ i ≤ n − 2. (3)

Solvability of Problem 2.1: Define ∆ =
 1+ε
1−ε

2 which increases
along with ε from 0 to 1. The parameters ai’s can be represented
as functions of ∆, i.e., an−1(∆) = 2, ai(∆) = 2 −

∆

ai+1(∆)
, when

ai+1 > 0, i = n− 2, . . . , 1. It is clear that when ∆ = 1 or ε = 0, all
ai’s in (3) are positive and by the continuity they will stay positive
for a period of time. Noting that a′

n−2(∆) = −
1
2 < 0, one has,

when an−2(∆) > 0, a′

n−3(∆) =
∆a′n−2−an−2(∆)

a2n−2(∆)
≤

−1
an−2(∆)

< −
1
2 .

By such analogy, it can be verified that, for i = n − 3, . . . , 1, when
ai+1(∆) > 0 and a′

i+1(∆) < 0

a′

i(∆) =
∆a′

i+1(∆) − ai+1(∆)

a2i+1(∆)
≤

−1
ai+1(∆)

< −
1
2
. (4)

The relation (4) implies that ai(∆) will strictly decrease from
ai(1) > 0 until one of them crosses the zero line. Moreover we
can show that a1(∆)will be the first one to hit the zero. Otherwise,
assume that ak(∆) for a k > 1, arrives at zero first, then one has
∆ = ak(2− ak−1) = 0, which implies that ak+1 = · · · = an−1 = 0.
This contradicts to the assumption an−1 = 2. Therefore, only a1(∆)
is the first one that arrives at the zero and the corresponding ε
reaches its maximum value ε∗ when a1 = 0. In other words, the
following proposition holds:

Proposition 2.1. For any 1 ≤ ∆ <
 1+ε∗

1−ε∗

2, the corresponding
ai(∆) > 0, ∀1 ≤ i ≤ n − 1.

Remark 2.1. In the following table, we list the value of ε∗ for
several cases by solving the optimization problem.

n 3 4 5 6 7 · · ·

ε∗ 0.3333 0.1716 0.1056 0.0718 0.0521 · · ·

Assumption 2.1. There is a known constant ε̄ such that the power
drifts εi’s satisfy |εi| ≤ ε̄ < ε∗(n) where ε∗(n) is the upper-bound
given in Definition 2.2.

The next condition ensures that the system is controllable.

Assumption 2.2. There exists a positive constant b0 such that
b(x(t)) ≥ b0 > 0.

Inwhat follows,we include two lemmaswhoseproofs canbe found
in Qian and Lin (2001).

Lemma 2.1. For x ∈ R, y ∈ R, p ≥ 1

||x|
1
p ± |y|

1
p | ≤ 21− 1

p ||x| ± |y||
1
p .

Lemma 2.2. For constants c > 0, d > 0 and a continuous function
γ (x, y) > 0, the following inequality holds:

|x|c |y|d ≤
c

c + d
γ (x, y)|x|c+d

+
d

c + d
γ −

c
d (x, y)|y|c+d.

3. Global stabilization of system (1)

First we show that we can choose appropriate homogeneous
weights such that the system is HWMD.

Lemma 3.1. Under Assumption 2.1, there exist constants mi > 0,
1 ≤ i ≤ n such that under the weights ri =

1
mi(1+εi)

, 1 ≤ i ≤ n, and
rn+1 = 1, the following holds τ1 ≥ τ2 ≥ · · · ≥ τn, with τi = ri+1−ri,
1 ≤ i ≤ n.

Proof. Based on ε̄ which is strictly less than ε∗(n) ≤ 1 as stated in
Assumption 2.1, āi can be fixed as

ān−1 = 2, āi = 2 −

1 + ε̄

1 − ε̄

2 1
āi+1

, i = n − 2, . . . , 1. (5)

By Proposition 2.1, āi’s in (5) apparently are strictly positive since
they have not reached the zero yet.
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