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a b s t r a c t

This communique uses the auxiliary model method to study the identification problem of a multiple-
input multiple-output (MIMO) system. For such a MIMO system whose outputs are contaminated by an
ARMA noise process (i.e., correlated noise), an auxiliary model based recursive least squares parameter
estimation algorithm is presented through filtering input–output data. The proposed algorithmhas higher
estimation accuracy than the existing multivariable identification algorithm. The simulation example is
given.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Multiple-input multiple-output (MIMO) systems widely exist
in industrial processes (Zhang, Shi, & Saadat, 2011). For example,
Wang, Ding, and Zhu (2013) designed a multivariable controller
for linear time-invariant MIMO systems through optimizing
controller parameters. Mercèrea and Bako (2011) studied the
parameterization and identification method for a MIMO canonical
state-spacemodel from data directly. Also, a hierarchical gradient-
based identification algorithm was proposed for multivariable
discrete-time systems (Ding & Chen, 2005).

The filtering technique has attracted much attention due to
its potential for solving many problems in signal processing and
analysis (Qaisar, Fesquet, & Renaudin, 2014), communication and
system identification. Recently, a filtering based least squares
algorithm has been developed for an equation-error MIMO system
whose disturbance is an autoregressive (AR) process (Wang et al.,
2013); a filtering based hierarchical stochastic gradient algorithm
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and two filtering based hierarchical iterative algorithms have
been presented for multivariable systems (Wang & Ding, 2016a,b).
On the basis of these work, this communique investigates novel
parameter estimation methods for an output-error MIMO systems
whose disturbance is an ARMAnoise using the auxiliarymodel and
data filtering methods. The main contributions of this work are as
follows.
• This communique derives a filtering based auxiliary model

recursive least squares (AM-RLS) algorithm for output-error
MIMOsystemswithARMAnoise through filtering input–output
data.

• Compared with the AM-RLS algorithm, the proposed filtering
based AM-RLS algorithm has higher estimation accuracy be-
cause it uses the filtered input–output data anduses the outputs
of the auxiliary model to replace the unknown variables.

• Thiswork is based on the output-errorMIMOmodelwith ARMA
noise and differs from the previousworkwith AR noise inWang
et al. (2013), because estimating the parameters of an AR pro-
cess is a linear problem, while estimating the parameters of an
ARMA process is a nonlinear one Li, Zhu, and Dickinson (1989).

• The convergence of the proposed algorithm is analyzed using
the stochastic process theory.
The communique is organized as follows. Section 2 derives

a filtering based auxiliary model recursive least squares (F-AM-
RLS) identification algorithm for MIMO systems and analyzes its
convergence. Section 3 compares the proposed algorithmwith the
existing algorithm. Section 4 gives a simulation example. Finally,
the concluding remarks are given in Section 5.
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2. The F-AM-RLS algorithm

Consider the following MIMO system with ARMA noise,

y(t) = x(t) + w(t), (1)
x(t) = G(z)u(t), (2)

where y(t) ∈ Rm is the output vector, u(t) ∈ Rr is the input vector,
w(t) := H(z)v(t) ∈ Rm is an ARMA noise process, v(t) ∈ Rm is a
white noise vector with zero mean, the rational fractions G(z) :=

β(z)/α(z) and H(z) := d(z)/c(z) are the transfer matrix/function,
z−1 is a unit backward shift operator, and

α(z) := 1 + α1z−1
+ α1z−2

+ · · · + αnz−n,

β(z) := β1z
−1

+ β2z
−2

+ · · · + βnz
−n,

c(z) := 1 + c1z−1
+ c2z−2

+ · · · + cnc z
−nc ,

d(z) := 1 + d1z−1
+ d2z−2

+ · · · + dndz
−nd .

Without loss of generality, suppose that the structure parameters
n, nc and nd are predetermined and y(t) = 0, u(t) = 0, w(t) = 0
and v(t) = 0 for t 6 0. The available input–output data are
{u(t), y(t)}.

Define the parameter vectors/matrices and the information
vectors/matrices:

θT := [β1,β2, . . . ,βn] ∈ Rm×(nr),

α := [α1, α2, . . . , αn]
T

∈ Rn,

ρ := [c1, c2, . . . , cnc , d1, d2, . . . , dnd ]
T

∈ Rnc+nd ,

ϕ(t) := [uT(t − 1), uT(t − 2), . . . , uT(t − n)]T ∈ Rnr ,

ζ(t) := [−x(t − 1), −x(t − 2), . . . ,−x(t − n)] ∈ Rm×n,

ξ(t) := [−w(t − 1), −w(t − 2), . . . ,−w(t − nc),

v(t − 1), v(t − 2), . . . , v(t − nd)] ∈ Rm×(nc+nd).

Then, Eqs. (1)–(2) can be rewritten as

x(t) = ζ(t)α+ θTϕ(t), (3)
w(t) = ξ(t)ρ + v(t), (4)

y(t) = ζ(t)α+ θTϕ(t) + w(t). (5)

Remark 1. For the identification model in (3)–(5), the input–
output data u(t) and y(t) are available. That is, only y(t) and ϕ(t)
are available but ζ(t) and ξ(t) are unavailable and unknown.

Remark 2. The difficulty of identification is that the information
matrix ζ(t) contains the unknown inner variable x(t − i). The
solution here is to construct an auxiliarymodel using themeasured
data u(t) and y(t), and to replace the unknown x(t − i) in the
identification algorithm with the output xa(t − i) of the auxiliary
model Ga(z) in Fig. 1.

Remark 3. From (5), we can see that the output y(t) contains the
correlated noise w(t), which results in biased estimates. In this
work, we use the filtering technique and combine the auxiliary
model for investigating a novel identification method. The details
are as follows.

We use a linear filter L(z) := H−1(z) to filter the input–output data
u(t) and y(t), and ζ(t) and ϕ(t), leading to the filtered variables
yf(t) := L(z)y(t) ∈ Rm, uf(t) := L(z)u(t) ∈ Rr , ζf(t) :=

L(z)ζ(t) ∈ Rm×n and ϕf(t) := L(z)ϕ(t) ∈ Rnr . Because H(z)
is to be identified and unknown, the proposed algorithm has to
be implemented through the recursive/iterative scheme using the
estimate of L(z). Multiplying both sides of (5) by L(z), we obtain a
filtered identification model,

yf(t) = ζf(t)α+ θTϕf(t) + v(t). (6)

Fig. 1. The MIMO system with an auxiliary model.

Remark 4. Because the filtered output yf(t) in (6) involves only the
white noise v(t), we will derive a new algorithm for estimating α
and θ using the filtered input–output data uf(t) and yf(t) (i.e., ζf(t)
and ϕf(t))—see Fig. 1.

The filtered identification model in (6) contains both a parameter
vector α and a parameter matrix θ. One solution is to derive the
estimation algorithm of the parameter vector α for fixed θ, and to
derive the estimation algorithm of the parametermatrix θ for fixed
α using the hierarchical identification principle in Ding and Chen
(2005).

Let α̂(t), θ̂(t) and ρ̂(t) be the estimates of α, θ and ρ at time
t , respectively. Based on the identification model in (6), for fixed
θ (that is θ is regarded as being known in this step), defining
and minimizing a quadratic criterion function, we can obtain the
following recursive least squares relation for α̂(t) (Goodwin & Sin,
1984; Ljung, 1999):

α̂(t) = α̂(t − 1) + Pα(t)ζTf (t)eα(t), (7)

eα(t) = yf(t) − ζf(t)α̂(t − 1) − θTϕf(t), (8)

P−1
α (t) = P−1

α (t − 1) + ζTf (t)ζf(t). (9)

Similarly, for fixedα, defining andminimizing a quadratic criterion
function, we can obtain the following recursive least squares
relation for θ̂(t):

θ̂(t) = θ̂(t − 1) + Pθ (t)ϕf(t)e
T
θ (t), (10)

eθ (t) = yf(t) − ζf(t)α− θ̂
T
(t − 1)ϕf(t), (11)

P−1
θ (t) = P−1

θ (t − 1) + ϕf(t)ϕ
T
f (t). (12)

Based on the identification model in (4), we can obtain the
recursive relation for ρ̂(t):

ρ̂(t) = ρ̂(t − 1) + Pρ(t)ξT(t)[w(t) − ξ(t)ρ̂(t − 1)]

= ρ̂(t − 1) + Pρ(t)ξT(t)

× [y(t) − ζ(t)α− θTϕ(t) − ξ(t)ρ̂(t − 1)], (13)

P−1
ρ (t) = P−1

ρ (t − 1) + ξT(t)ξ(t). (14)

Pα(t), Pθ (t) and Pρ(t) are the covariance matrices. However,
Eqs. (7)–(14) cannot be implemented because their right-hand
sides contain the unknown variables yf(t), ζf(t), ϕf(t), w(t), ξ(t),
θ and α.

Since the filter L(z) and the inner variable x(t) are unknown,
so are the filtered variables yf(t), ζf(t) and ϕf(t). To solve this
problem, referring to Fig. 1, we use Ga(z) to generate the estimate
xa(t) of x(t) by means of the auxiliary model or reference model
method, and use the estimate L̂(t, z) of L(z) at time t to generate
the estimates ŷf(t), ζ̂f(t) and ϕ̂f(t) of yf(t), ζf(t) and ϕf(t):

ŷf(t) := L̂(t, z)y(t), ûf(t) := L̂(t, z)u(t), (15)
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