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a b s t r a c t

All the approaches for hybrid system identification appeared in the literature assume that model
complexity is known. Popular models are e.g. piecewise ARX with a priori fixed orders. Furthermore,
the developed numerical procedures have been tested only on simple systems, e.g. composed of ARX
subsystems of order 1 or at most 2. This represents a major drawback for real applications. This
paper proposes a new regularized technique for identification of piecewise affine systems, namely
the hybrid stable spline algorithm (HSS). HSS exploits the recently introduced stable spline kernel to
model the submodels impulse responses as zero-mean Gaussian processes, including information on
submodels predictor stability. The algorithm consists of a two-step procedure. First, exploiting the
Bayesian interpretation of regularization, the problem of classifying and distributing the data to the
subsystems is cast as marginal likelihood optimization. We show how an approximated optimization can
be efficiently performed by aMarkov chainMonte Carlo scheme. Then, the stable spline algorithm is used
to reconstruct each subsystem. Numerical experiments on real and simulated data are included to test the
new procedure. They show that HSS not only solves all the most popular benchmark problems proposed
in the literature without having exact information on ARX subsystems order, but can also identify more
complex (high-order) piecewise affine systems. MATLAB code implementing the approach, called Hybrid
Stable Spline Toolbox, is also made available.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Hybrid (switched) systems have been subject of much research
in the last years. Their importance stems from the capability of de-
scribing in an unified setting several processes evolving through
continuous/discrete dynamics and logic rules (Bemporad, Ferrari-
Trecate, & Morari, 2000), permitting e.g. to represent linear com-
plementarity systems (Heemels, De Schutter, & Bemporad, 2001)
as well as interactions between affine systems and finite automata
(Sontag, 1996). Hybrid systems can be used also to approximate
(with arbitrary accuracy) nonlinear dynamics by linearization
around different working points, see Breiman (1993) and Lin and
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Unbehauen (1992) for universal approximation properties. Exam-
ples and applications of these models can be found in many dif-
ferent fields, including e.g. model predictive/nonlinear systems
control, state estimation, computer vision, air traffic manage-
ment (Bemporad & Morari, 1999; Liberzon, 2003; Paoletti, Juloski,
Ferrari-Trecate, & Vidal, 2007).

This paper in particular deals with the identification of a
discrete-time hybrid system composed by s affine submodels, each
defined by a (column) vector θk. A discrete state variable xt evolves
over time t and selects the kth submodel if xt = k. For t =

1, . . . ,N , the measurements model is

yt = ρ⊤

t θk + et for xt = k (1.1)

where yt is the system output corrupted by a zero-mean white
Gaussian noise et of variance σ 2, i.e. et ∼ N (0, σ 2), while ρt is an
observable regression (column) vector. In particular, as a concrete
and important example, hereby we assume

ρt = [1 yt−1 . . . yt−m ut−1 . . . ut−m]
⊤ (1.2)

where ut is the system input measured at instant t and m is the
system order/memory. With this definition, the first component
of θk defines the offset, while the other 2m contain two ‘‘impulse
responses’’. Examples built using (1.2) are in Table 1 which reports
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six popular hybrid systems taken from the literature. Starting from
the measurements {ut , yt}Nt=1, our problem is to reconstruct the s
vectors θk.

Switched (also called segmented) models arise e.g. when the
state variable follows a deterministic (possibly periodic) trajectory,
e.g. see System 1 in Table 1, or when the xt are modeled as random
variables independent of the regressorsρt , as in System2of Table 1
(x ∼ UA indicates a random variable x uniform on the set A).
The opposite situation is found when the regressor space X is
partitioned into s subsets Xk and the switching rule becomes
xt = k ⇐⇒ ρt ∈ Xk. This leads to the popular piecewise
affine (PWA)modelswhich, under (1.2), specialize to the important
subclass of the piecewise auto-regressive with exogenous input
(PWARX) models. Examples are Systems 3–6 contained in Table 1.
Combining the condition xt = ρt and (1.1), (1.2), one can see that
a PWARX model determines the active model only on the basis of
the last m input–output samples. A variant is obtained neglecting
the autoregressive part, i.e. ρt = [1 ut−1 . . . ut−m]

⊤, thus leading
to PWFIR models.

The difficulty of hybrid system identification is the need
of jointly classifying the data (assigning each regressor to the
submodel more likely to be active) and estimating the system
parameters. Furthermore, the input–output hybrid map can be
discontinuous along the boundaries of the submodels regions.
This encumbers the use of standard kernel-based approaches,
e.g. support vector regression and regularization/neural networks
(Evgeniou, Pontil, & Poggio, 2000; Fausett, 1994; Schölkopf &
Smola, 2001) which postulate function smoothness.

The approach in Ferrari-Trecate, Muselli, Liberati, and Morari
(2003) faces these difficulties combining clustering, linear identi-
fication and pattern recognition technique. In particular, the algo-
rithm is based on the assumption that regressors close each other
likely belong to the same ARX submodel. In Roll, Bemporad, and
Ljung (2004), mixed-integer linear and quadratic programming is
proposed to identify two subclasses of PWARX models. The ap-
proach in Bemporad, Garulli, Paoletti, and Vicino (2005) is instead
inspired by set-membership identification techniques (Milanese &
Vicino, 1991). The identification error is assumed to be bounded
by a known quantity, and then the search for a minimum number
of feasible subsystems is performed. This problem is however NP-
hard and a suboptimal algorithm is proposed based on thermal re-
laxations. A Bayesian framework is introduced in Juloski, Weiland,
and Heemels (2005). Here, the θk are random vectors and classi-
fication corresponds to extracting data with highest a posteriori
probability. This step is performed by designing an approximated
Bayes estimator implemented by particle filters (Andrieu, Doucet,
& Holenstein, 2010).

Hybrid system identification is faced in an algebraic fashion in
Vidal, Chiuso, and Soatto (2002): exploiting polynomial factoriza-
tion and hyperplane clustering an exact solution is obtained but
only in the noiseless case. While a recursive estimation scheme is
described in Vidal (2008), more recent approaches rely on convex
relaxation and sparse optimization. In particular, in Ohlsson and
Ljung (2013) the problem’s combinatorial nature is tackled by first
introducing an overparametrized model. Then, the submodels pa-
rameters are estimated by least squares regularized via a sum-of-
norms penalty. A regularization parameter is introduced to balance
adherence to experimental data and number of submodels. In Bako
(2011), identification is instead performed by solving a sequence of
(non regularized) problems defined by weighted (and reweighted)
ℓ1 losses. An analysis of the algorithm is also obtained under noise-
less assumptions.

It is worth noticing that all of the aforementioned approaches
to hybrid system identification assume known the order m of the
ARX submodels. In addition, all the proposed algorithms have been
tested only on quite simple hybrid systems (e.g. in Table 1 one

has m = 2, at most). This appears an important drawback for
real applications where systems can be more complex and m is
typically unknown. This is a central issue in system identification:
it is crucial to find a suitable model structure with the right model
complexity yielding a good bias–variance tradeoff (Ljung, 1999;
Söderström & Stoica, 1989). In light of this, the aim of this paper is
to design a new regularized techniquewhich determines fromdata
also submodels complexity. This will be achieved by extending
the stable spline estimator proposed in Pillonetto, Chiuso, and De
Nicolao (2011) and Pillonetto and De Nicolao (2010) (and further
discussed in Chen, Ohlsson, & Ljung, 2012 and Pillonetto, Dinuzzo,
Chen, De Nicolao, & Ljung, 2014). We interpret hybrid system
identification as a functional estimation problem, facing its ill-
posedness/ill-conditioning in a Bayesian framework (Rasmussen
&Williams, 2006). In particular, submodels impulse responses are
modeled as zero-mean Gaussian processes with autocovariances
equal to the stable spline kernel. In this way, information on the
exponential stability of the predictor of each isolated subsystem
is included in the estimation process.

The stable spline estimator for linear system identification
depends on two (unknown) hyperparameters: the scale factor
λ and the stability parameter α which regulates how fast the
impulse response decays to zero. In comparison with classical
parametric approaches, one important feature of this estimator
is that the difficult model order selection can be replaced by
hyperparameters estimation. In particular, in Chen et al. (2012)
and Pillonetto and De Nicolao (2010) λ and α are estimated
optimizing the marginal likelihood (ML), i.e. the marginal density
ofmeasurements obtained after integrating out the dependence on
the impulse response (MacKay, 1992). This operation is also known
as Empirical Bayes (Maritz & Lwin, 1989). Several merits of ML
are documented in the literature, e.g. the fact that it automatically
includes the Occam’s razor (MacKay, 1992). Recent studies have
also clarified whyMLmaywork well also in presence of deviations
from the stochastic model, i.e. when undermodeling affects the
kernel-based impulse response description (Pillonetto & Chiuso,
2014, 2015).

However, differently from the linear scenario, in hybrid system
identification other N unknown variables have to be considered:
the state variables xt which indicate which submodel is active at
every instant t . The main idea explored in this paper is to consider
these classification variables as further hyperparameters which
can be estimated via ML optimization. Due to its combinatorial
nature, this problemwould seem unfeasible. Wewill instead show
how an approximated optimization can be efficiently performed
through a Markov chain Monte Carlo (MCMC) approach (Gilks,
Richardson, & Spiegelhalter, 1996). Our scheme is completely
automatic: it generates a Markov chain exploring the ML without
the need of specifying any proposal density or tuning parameter.
Experimental results show that running few and short Markov
chains can already lead to very accurate classifications. Then,
once the xt are determined via ML optimization, s stable spline
estimators are used to reconstruct the submodels.

The paper is so organized. In Section 2, we introduce the
stable spline model for hybrid systems adopted to classify and
distribute data to the submodels. Section 3 then describes how
the classification problem is solved by HSS via ML optimization.
In particular, an MCMC scheme to efficiently explore the support
of ML is designed. In Section 4 the algorithm’s description
is completed showing how the submodels are reconstructed
by HSS once the estimates of xt are available. Section 5
introduces some indexes related to classification and impulse
responses reconstruction. We also present two oracle-based
procedures, and related indices, which permit to define useful
performance references to assess the effectiveness of a hybrid
system identification procedure. Section 6 reports some numerical
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