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a b s t r a c t

In this paper,we analyze economicmodel predictive control schemeswithout terminal constraints,where
the optimal operating behavior is not steady-state operation, but periodic behavior. We first show by
means of a counterexample, that a classical receding horizon control scheme does not necessarily result
in an optimal closed-loop behavior. Instead, amulti-stepMPC schememay be needed in order to establish
near optimal performance of the closed-loop system. This behavior is analyzed in detail, andwe show that
under suitable dissipativity and controllability conditions, desired closed-loop performance guarantees as
well as convergence to the optimal periodic orbit can be established.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the study of economic model predictive control
(MPC) schemes has received a significant amount of attention.
In contrast to standard stabilizing MPC, the control objective is
the minimization of some general performance criterion, which
need not be related to any specific steady-state to be stabilized.
These type of control problems arise in many different fields
of application, ranging, e.g., from the process industry over
building climate control or the control of wind turbines to the
development of sustainable climate policies (see, e.g., Amrit,
Rawlings, & Biegler, 2013; Chu, Duncan, Papachristodoulou, &
Hepburn, 2012;Gros, 2013;Heidarinejad, Liu, & Christofides, 2012;
Hovgaard, Larsen, Edlund, & Jørgensen, 2012; Mendoza-Serrano &
Chmielewski, 2014). In the literature, various different economic
MPC schemes have been developed for which desired closed-
loop properties such as performance estimates or convergence can
be guaranteed. These include schemes with additional terminal
equality or terminal region constraints (Amrit, Rawlings, & Angeli,
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2011; Angeli, Amrit, & Rawlings, 2012), with generalized terminal
constraints (Fagiano & Teel, 2013; Müller, Angeli, & Allgöwer,
2013), without terminal constraints (Grüne, 2013), and Lyapunov-
based schemes (Heidarinejad et al., 2012) (see also the recent
survey article Ellis, Durand, & Christofides, 2014).

A distinctive feature of economicMPC is the fact that the closed-
loop trajectories are not necessarily convergent to a steady-state,
but can exhibit more complex, e.g., periodic, behavior. In particu-
lar, the optimal operating behavior for a given system depends on
its dynamics, the considered performance criterion and the con-
straints which need to be satisfied. The case where steady-state
operation is optimal is by now fairly well understood, and vari-
ous closed-loop guarantees have been established in this case. For
example, a certain dissipativity property is both sufficient (Angeli
et al., 2012) and (under a mild controllability condition) neces-
sary (Müller, Angeli, & Allgöwer, 2015) for a system to be opti-
mally operated at steady-state. The same dissipativity condition
(strengthened to strict dissipativity)was used in Amrit et al. (2011)
and Angeli et al. (2012) to prove asymptotic stability of the opti-
mal steady-state for the resulting closed-loop systemwith the help
of suitable terminal constraints. Similar (practical) stability results
were established in Grüne (2013) and Grüne and Stieler (2014)
without such terminal constraints.

On the other hand, the picture is still much less complete
in case that the optimal operating behavior is non-stationary.
This situation occurs in many cases of practical interest, such
as in certain chemical reactors (see, e.g. Amrit et al., 2013;
Angeli et al., 2012; Ellis et al., 2014) or in applications with
time varying (energy) prices or demand (see, e.g., Limon, Pereira,
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Muñoz de la Peña, Alamo, & Grosso, 2014; Mendoza-Serrano &
Chmielewski, 2014). For such cases, in Angeli et al. (2012) it was
shown that when using some periodic orbit as (periodic) terminal
constraint within the economic MPC problem formulation, then
the resulting closed-loop system will have an asymptotic average
performance which is at least as good as the average cost of
the periodic orbit. Convergence to the optimal periodic orbit was
established in1 Huang et al. (2011) and Zanon, Gros, and Diehl
(2013) using similar terminal constraints, and in Limon et al.
(2014) for linear systems and convex cost functions using less
restrictive generalized periodic terminal constraints. Furthermore,
dissipativity conditions which are suited as sufficient conditions
such that the optimal operating behavior of a system is some
periodic orbit were recently proposed in Grüne and Zanon (2014).

In this paper, we consider economicMPCwithout terminal con-
straints for the case where periodic operation is optimal. Using no
terminal constraints is in particular desirable in this case as the op-
timal periodic orbit then need not be known a priori (i.e., for im-
plementing the economic MPC scheme). Furthermore, the online
computational burden might be lower and a larger feasible region
is in general obtained.We first showbymeans of a counterexample
(see Section 3), that the classical receding horizon control scheme,
consisting of applying the first step of the optimal predicted input
sequence to the system at each time, does not necessarily result in
an optimal closed-loop performance. We then prove in Section 4
that this undesirable behavior can be resolved by possibly using a
multi-stepMPC scheme instead. In particular, we show that the re-
sulting closed-loop systemhas an asymptotic average performance
which is equal to the average cost of the optimal periodic orbit
(up to an error term which vanishes as the prediction horizon in-
creases). This recovers the results of Angeli et al. (2012), where
periodic terminal constraints were used as discussed above. In
Section 5 we derive checkable sufficient conditions based on dissi-
pativity and controllability in order to apply the results of Section 4.
Furthermore, in Section 6we show that under the same conditions,
also (practical) convergence of the closed-loop system to the opti-
mal periodic orbit can be established.

We close this section by noting that our analysis partly builds
on the one in Grüne (2013), where closed-loop performance
guarantees and convergence results for economic MPC without
terminal constraints were established for the case where the
optimal operating behavior is steady-state operation. However,
while some of the employed concepts and ideas are similar to
those in Grüne (2013), various properties of predicted and closed-
loop sequences are different in the periodic case considered in
this paper, and hence also different analysis methods are required.
Finally, we note that a preliminary version of some of the results of
this paper have appeared in the conference paper (Müller & Grüne,
2015). Compared to Müller and Grüne (2015), the main novelties
of the present paper are a more comprehensive exposition of
the subject including various additional remarks and examples
as well as all proofs (which were partly missing in Müller and
Grüne (2015)), the development of our results using a more
general dissipativity condition, and the establishment of closed-
loop (practical) convergence to the optimal periodic orbit.

2. Preliminaries and setup

Let I[a,b] denote the set of integers in the interval [a, b] ⊆ R,
and I≥a the set of integers greater than or equal to a. For a set

1 In Huang, Harinath, and Biegler (2011), however, again the standard
assumption as in stabilizingMPC, i.e., positive definiteness of the cost function, was
imposed, which means that no general performance criterion as in economic MPC
could be considered.

A ⊆ I≥0, #A denotes its cardinality (i.e., the number of elements).
For a ∈ R, ⌊a⌋ is defined as the largest integer smaller than or equal
to a. The distance of a point x ∈ Rn to a set A ⊆ Rn is defined
as |x|A := infa∈A |x − a|. For a set A ⊆ Rn and ε > 0, denote
by Bε(A) := {x ∈ Rn

: |x|A ≤ ε}. By L we denote the set of
functions ϕ : R≥0 → R≥0 which are continuous, nonincreasing
and satisfy limk→∞ ϕ(k) = 0. Furthermore, by KL we denote the
set of functions γ : R≥0 × R≥0 → R≥0 such that for each ϕ ∈ L,
the function γ (k) := γ (ϕ(k), k) satisfies γ ∈ L. Note that the
definition of aKL-function requiresweaker properties than those
for classical KL-functions, i.e., each KL-function is also a KL-
function (but the converse does not hold).

We consider nonlinear discrete-time systems of the form

x(k + 1) = f (x(k), u(k)), x(0) = x (1)

with k ∈ I≥0 and f : Rn
× Rm

→ Rn. System (1) is subject to
pointwise-in-time state and input constraints x(k) ∈ X ⊆ Rn and
u(k) ∈ U ⊆ Rm for all k ∈ I≥0. For a given control sequence
u = (u(0), . . . , u(K)) ∈ UK+1 (or u = (u(0), . . .) ∈ U∞), denote
by xu(k, x) the corresponding solution of system (1) with initial
condition xu(0, x) = x. For a given x ∈ X, the set of all feasible
control sequences of lengthN is denoted byUN(x), where a feasible
control sequence is such that u(k) ∈ U for all k ∈ I[0,N−1] and
xu(k, x) ∈ X for all k ∈ I[0,N]. Similarly, the set of all feasible control
sequences of infinite length is denoted by U∞(x). In the following,
we assume for simplicity that U∞(x) ≠ ∅ for all x ∈ X. This means
that for all initial conditions x ∈ X, there exists a trajectory which
stays in X for all times, i.e., the set X is control invariant under
controls in U. This assumption might be restrictive in general, and
it can be relaxed if desired, using, e.g., methods similar to those
in Grüne and Pannek (2011, Chap. 8) or Faulwasser and Bonvin
(2015). However, the technical details of such an extension are
beyond the scope of this paper.

Remark 1. For ease of presentation, we use decoupled state and
input constraint sets X and U in the statement of our results.
Nevertheless, all results in this paper are also valid for possibly
coupled state and input constraints, i.e., (x(k), u(k)) ∈ Z for all
k ∈ I≥0 and some Z ⊆ Rn

× Rm, which will also be used in the
examples. �

System (1) is equipped with a stage cost function ℓ : X × U → R,
which is assumed to be bounded from below on X×U, i.e., ℓmin :=

infx∈X,u∈U ℓ(x, u) is finite. Note that this is, e.g., the case if X × U
is compact and ℓ is continuous. Without loss of generality, in the
following we assume that ℓmin ≥ 0. We then define the following
finite horizon cost functional

JN(x, u) :=

N−1
k=0

ℓ(xu(k, x), u(k)) (2)

and the corresponding optimal value function

VN(x) := inf
u∈UN (x)

JN(x, u). (3)

In the following, we assume that for each x ∈ X, a control sequence
u∗

N,x ∈ UN(x) exists such that the infimum in (3) is attained, i.e., u∗

N,x
satisfies VN(x) = JN(x, u∗

N,x). Since we assume that U∞(x) ≠ ∅

for all x ∈ X, this is, e.g., satisfied if f and ℓ are continuous and U
is compact. A standard MPC scheme without additional terminal
cost and terminal constraints then consists of minimizing, at each
time instant k ∈ I≥0 with current system state x = x(k), the
cost functional (2) with respect to u ∈ UN(x) and applying the
first element of the resulting optimal input sequence u∗

N,x to the
system. This means that the resulting receding horizon control
input to system (1) is given by uMPC (k) := u∗

N,xuMPC (k,x)(0), where
xuMPC (·, x) denotes the corresponding closed-loop state sequence.
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