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a b s t r a c t

The paper deals with observation of nonlinear and deterministic, though maybe chaotic, discrete-time
systems via finite capacity communication channels. We introduce several minimum data-rate limits
associated with various types of observability, and offer new tractable analytical techniques for their
both upper and lower estimation. Whereas the lower estimate is obtained by following the lines of the
Lyapunov’s linearizationmethod, the proposedupper estimation technique is along the lines of the second
Lyapunov approach. As an illustrative example, the potential of the presented results is demonstrated for
the system which describes a ball vertically bouncing on a sinusoidally vibrating table. For this system,
we provide an analytical computation of a closed-form expression for the threshold that separates the
channel data rates for which reliable observation is and is not possible, respectively. Another illustration
is concerned with the celebrated Hénon system. The offered sufficient data rate bound is accompanied
with a constructive observer that works whenever the channel capacity fits this bound.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in communication technology have created
the possibility of large-scale control systems, where the control
tasks are distributed over many agents orchestrated via a commu-
nication network; a particular example can be found inmodern in-
dustrial systems, where the components are often connected over
digital band-limited serial communication channels (Gao, Chen,
& Lam, 2008; Liu et al., 2014; Postoyan, van de Wouw, Nešić, &
Heemels, 2014; Wang, Gao, & Qiu, 2015). This motivated devel-
opment of a new chapter of control theory, where control and
communication issues are integrated; see e.g., Antsaklis and Bail-
lieul (2007),Mahmoud (2014),Matveev and Savkin (2009),Murray
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(2002), Postoyan and Nešić (2012), Postoyan et al. (2014) and Yük-
sel and Basar (2013).

In this area, a basic question is about the smallest communica-
tion data rate required to achieve a certain control objective for a
given plant. This fundamental parameter has been studied in a va-
riety of settings (Baillieul, 2004; de Persis, 2005; de Persis & Isidori,
2004; Liberzon & Hespanha, 2005; Matveev & Savkin, 2009; Nair,
Evans, Mareels, & Moran, 2004; Nair, Fagnani, Zampieri, & Evans,
2007; Savkin, 2006) and always found to be somewhat similar to
the topological entropy, which is an ubiquitous quantitative mea-
sure of randomness, chaos, uncertainty, and complexity in dynam-
ical systems (Donarowicz, 2011; Katok, 2007). These studies gave
rise to specialized control-oriented concepts of entropy.Most close
to the canonical definitions (Adler, Konheim, & McAndrew, 1965;
Bowen, 1971; Dinaburg, 1970) of the topological entropy is the
concept accounting for uncertainties in the plant model (Savkin,
2006). Effects caused by a feedback are reckoned in the feedback
topological entropy (Nair et al., 2004), invariance entropy (Colonius
& Kawan, 2009), and their modifications (Colonius & Kawan, 2011;
Hagihara & Nair, 2013; Kawan, 2011a): the original two concepts
are shown to be essentially the same (Colonius, Kawan, & Nair,
2013).

The mentioned studies transport the topological entropy and
its recent analogs from the topical areas of pure mathematics and
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physics towards everyday practice of control and communication
engineers, thus enhancing the need for tractable methods of
entropy evaluation. However, the last issue is highly intricate as
far as nonlinearity is concerned. One of the paper’s contributions is
a method for constructive estimation of the entropy for nonlinear
discrete-time systems.

Comprehensive closed-form expressions for entropy-related
data-rate limits are well known for linear systems and cover the
basic control objectives, such as stabilization and state estimation;
see, e.g., the surveys in Matveev and Savkin (2009), Nair et al.
(2007),Mahmoud (2014), Yüksel and Basar (2013) andNair (2015).
The ‘‘nonlinear’’ realm is much less inhabited by similar samples;
for the most part, they are somehow close to linear systems
or are one-dimensional. In Savkin (2006), topological entropy is
computed in closed form for special uncertain linear systems,
and this result was applied to problems of stabilization, state
estimation, and optimal control. In Nair et al. (2004), closed-form
computation of the local feedback topological entropy in fact deals
with restriction of a smooth nonlinear system on a tight vicinity of
the equilibrium, where the system is close to linear. Constructive
lower and upper bounds on the invariance entropy and some its
descendants are given in Kawan (2011a,b,c); conservatism of these
bounds basically remains an open issue, though a closed form
computation is offered for one-dimensional systems nonlinear in
state and affine in control.

Intricacies in entropy evaluation are fairly well illuminated in
the general theory of nonlinear dynamics. Whereas effective gen-
eral approaches are known for low dimensional systems, espe-
cially for piece-wisemonotone intervalmappings (see, e.g., Alsedá,
Llibre, & Misiurewicz, 2000; Amigó & Giménez, 2014; de Melo &
van Strien, 1993; Donarowicz, 2011; Milnor & Thurston, 1988),
rigorous incomputability results are obtained for more complex
cases (Delvenne & Blondel, 2004; Hurd, Kari, & Culik, 1992; Koiran,
2001; Simonsen, 2006), e.g., for piece-wise affine continuousmaps
and ε ≈ 0, no program can generate a rational number in a finite
time that approximates the topological entropywith precision ε or
better (Koiran, 2001). Exact values of topological entropy are still
unknown for even such widely-studied low-dimensional chaotic
systems as Hénon map, Dufing and van der Pol oscillators, Rössler
system, and bouncing ball system, though various estimates and
results of approximate numerical studies are available.

The first objective of this paper is to contribute to reducing con-
servatism of existing estimates of topological entropy via develop-
ment of new tractable analytical techniques. These techniques are
in the vein of the direct Lyapunovmethod, and the paper means to
show that its potential has not been fully employed in this area up
to now. This focus on the second Lyapunov method is off the main
avenue of previous research, whose prevailing preferences in eval-
uation of the topological entropy and the likes were for Lyapunov
exponents or similar instruments related to the linearized system
(the first Lyapunov method) or for approaches not associated with
Lyapunov. Our interest to the second Lyapunov method is partly
inspired by its wide acceptance in control practice and its support
by computationally efficient and theoretically well-founded algo-
rithms based on either Linear Matrix Inequalities or the Kalman-
Szegö lemma (stated in Appendix A). The proposed techniques
develop some ideas from nonlinear dynamics (Boichenko &
Leonov, 1995; Boichenko, Leonov, & Reitman, 2005; Douady &
Osterlé, 1980; Katok, 2007; Leonov, 1991, 2008; Temam, 1997;
Yomdin, 1987) and are partly based on extending our study of
continuous-time plants (Pogromsky & Matveev, 2010, 2011) on
systems operating in discrete time.

On the side of control theory, the paper deals with the
state estimation issue for deterministic though maybe, chaotic,
nonlinear systems. This is of interest in its own right and since
many control problems can be typically solved if a reliable state

estimate is available. The second contribution of the paper is
concerned with the question: what is the minimum bit-rate of
data communication from the sensor to observer which makes it
possible to protect a once achieved observation accuracy from a
drastic regression, or even to improve it. This question gives rise
to new entropy-like characteristics of the plant, though we do not
refer to them as ‘‘entropies’’ by retaining the name of ‘‘data rate
limits’’.

We show that these new characteristics enhance the topologi-
cal entropy; whereas the proposed techniques in fact estimate ex-
actly them, which throws extra light on the status and scope of
the techniques themselves. Their potential is demonstrated by an-
alytically finding a closed-form expression for the exact values of
these global entropy-like data rate limits for a ball vertically bounc-
ing on a sinusoidally vibrating table, which is among the simplest
physical systems that exhibit remarkably complex chaotic behav-
iors (Cao, Judd, & Mees, 1997; Tufillaro, Abbott, & Reilly, 1992),
including existence of strange attractors (Clark, Martin, Moore, &
Jesse, 1995; Mello & Tuffilaro, 1987). This system not only enjoys
much attention in general study of nonlinear dynamics as a ba-
sic test example but also is of interest by its own right for various
engineering applications, e.g., those concerned with jackhammers,
vibro-transporters, vibratory feeders, etc. (Tufillaro et al., 1992).
Our respective computation also takes the benefit of Kalman-Szegö
lemma. To the best of the knowledge of the authors, the exact value
of the topological entropy of the bouncing ball system still remains
an open issue even for special numerical values of the parameters.
Another illustration is concerned with the celebrated Hénon sys-
tem (Hénon, 1976). Here the results are not so completed, partly
due to the lack of analytical knowledge about invariant sets of this
system. To the best of the knowledge of the authors, the paper im-
proves the previously known closed-form estimates of the topo-
logical entropy for these two systems.

The paper is organized as follows. Section 2 offers problem
setup and introduces basic concepts. Necessary and sufficient data
rate bounds are reported in Sections 3 and 4, respectively. In
Sections 5 and 6, they are applied to the bouncing ball and Hénon
systems, respectively. In Section 7, the so obtained bounds are
experimentally verified,whereas Section 8 offers brief conclusions.
A complementary material and technically demanding proofs are
concentrated in appendices.

The following notations are adopted in the paper: Z — the set
of integers; [k1 : k2] := {k ∈ Z : k1 ≤ k ≤ k2}; Z+ := {k ∈ Z :

k ≥ 0}; ⟨·; ·⟩ and ∥ · ∥ — the standard inner product and Euclidean
norm in Rn, respectively; ‘‘ε-ball’’ — ball with the radius ε.

2. State estimation problem and basic definitions

We consider a discrete-time invariant nonlinear system

x(t + 1) = φ[x(t)], t ∈ Z+, x(0) ∈ K , (1)

where x(t) ∈ Rn is the state, and φ : Rn
→ Rn and K ⊂ Rn are a

given continuousmap and a nonempty compact set of initial states,
respectively. The objective is to generate an accurate estimatex(t)
of x(t) at a remote location, where direct observation of the state
is impossible.

The only way to deliver information from the sensor to this
location is via a discrete communication channel. At time t ,
it carries a discrete-valued symbol e(t). So to be transmitted,
continuous-valued sensor readings x(t) should be first translated
into such symbols. This is done by a special device, referred to as
the coder. Its outputs are transmitted for the unit time across the
channel to a decoder that produces an estimatex(t) ∈ Rn of the
current state x(t); see Fig. 1. Thus the observer is constituted by the
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