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a b s t r a c t

In this paper, a newdemand-sidemanagement problemof networked smart grid is formulated and solved
based on evolutionary game theory. The objective is to minimize the overall cost of the smart grid, where
individual communities can switch between grid power and local power according to strategies of their
neighbors. The distinctive feature of the proposed formulation is that, a small portion of the communities
are cooperative, while others pursue their own benefits. This formulation can be categorized as control
networked evolutionary game, which can be solved systematically by using semi-tensor product. A
new binary optimal control algorithm is applied to optimize transient performances of the networked
evolutionary game.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Demand-sidemanagement of energy systems becomes increas-
ingly popular, because of its great potential in improving en-
ergy efficiency in industries. Smart grid is a typical platform
where demand-side management strategies can be applied. A
core issue in smart grid is that, dynamic user behaviors should
be addressed in designing demand-side management strategies.
Widely-used techniques for demand-side management of smart
grid include game theoretic approach (Mohsenian-Rad, Wong,
Jatskevich, Schober, & Leon-Garcia, 2014), multi-objective opti-
mization (Malatji, Zhang, & Xia, 2013; Nwulu & Xia, 2015), dis-
tributed energy consumption control (Ma,Hu, & Spanos, 2014), and
model predictive control (Zhang & Xia, 2011), etc.

Smart grids can be analyzed in the perspective of network
systems, since there usually exist multiple interactive users
consuming powers from grids. In networked smart grid systems,
stability and optimization are two main issues. Stability of the
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networked smart grid system indicates that interactive users
reach an equilibrium. Some methodologies, i.e. game theory
(Mohsenian-Rad et al., 2014), can be applied to prove the existence
of equilibria in networked smart grid system. Optimization of the
network smart grid system implies that, in the transient process
to reach the equilibrium, some indexes can be optimized. The grid
provider is capable of influencing decisions of users in the network
by presenting dynamic pricing strategies (Jiang, Cao, Yu, & Wang,
2014; Li, Lu, Lin, & Shen, 2013). It is possible that the smart grid
provider and some of the users cooperate to affect decisions of
other users, such that the common benefit can be improved.

Game theory has been widely applied to energy systems
(Du, Grijalva, & Harley, 2015; Hong, Su, & Chou, 2014). In
previous researches on game theoretic policy for energy systems,
fundamental games are usually played between two individual
users (Xiao, Mandayam, & Poor, 2015), or between the power
company and users (Fadlullah, Quan, Keto, & Stojmenovic, 2014).
Pay-off functions and strategies are usually defined such that
existence of Nash Equilibrium (NE) can be proved. Optimization
(ormodel predictive control Stephens, Smith, &Mahanti, 2015) can
be employed to search for NE. Sometimes the fundamental game
is played repeatedly, and strategies of users are updated in real-
time. In this situation, it is named evolutionary game (Cheng, He,
Qi, & Xu, 2015). Networked evolutionary game indicates that, the
repeated game is played among networked users, and updating
laws relate to topological structure of the network (Cheng, 2009).
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In some networked evolutionary games, actions of some users can
be actively assigned, such that other users are induced to improve
common benefit. The users with actively assigned actions can be
defined as controllers; and the networked evolutionary gamewith
controllers can be defined as control networked evolutionary game
(Zhao, Li, & Cheng, 2011).

During recent years, a new semi-tensor product (Cheng, Qi, &
Xue, 2007) is developed to solve the problem of networked evolu-
tionary game. The semi-tensor product is an extension of ordinary
matrix product. By using semi-tensor product, dynamics of evo-
lutionary games can be formulated into an algebraic form (Cheng,
2009), and the existence of NE can be proved systematically (Cheng
et al., 2015). For the control networked evolutionary game, control
strategies can be designed to reach the NE by using semi-tensor
product. Moreover, classical control methods can be introduced
and extended in the framework of semi-tensor product to attain
the NE of the networked evolutionary game.

In this paper, demand-side management of a class of smart grid
is studiedwithin the framework of control networked evolutionary
game. The smart grid is built among interactive communities using
either grid power or local generated power. It is assumed that a
small portion of the communities are subsidized, thus cooperative
with the grid provider. However, other communities are un-
subsidized and pursuing individual benefits. We aim to design
actions for the cooperative communities (controllers), such that
the common benefits can be improved even if other communities
are noncooperative. The main contributions of this paper include
that: (1) the demand-side management of a smart grid is modeled
into a control networked evolutionary game; (2) the networked
evolutionary game is composed by fundamental games played
simultaneously among several players instead of 2-player games;
(3) semi-tensor product is applied to solve the demand-side
management problem; and (4) a new binary optimal control is
introduced to optimize the transient performance of the control
networked evolutionary game.

The layout of this paper is arranged as follows. In Section 2,
mathematical preliminaries are introduced. In Section 3, the
demand-side management of a simple smart grid is formulated
within the framework of control networked evolutionary game.
In Section 4, the proposed control evolutionary game is analyzed
and solved by using semi-tensor product, and a new optimal
control approach is proposed to improve transient performance.
In Section 5, a simulation example is presented to illustrate
the proposed demand-side management approach. This paper is
concluded in the final section.

2. Mathematical preliminaries

2.1. Control networked evolutionary game

Information interchange within networked system can be
described by a directed graph G = {V , E }, where V =

{π1, π2, . . . , πn} is a set of nodes, and E ⊆ V × V is a set of edges
that depict information flow between nodes. An edge (πi, πj) in
G denotes that the information of node πi is available to πj, and
πi is defined as a neighbor of πj. The index set of all neighbors of
node πj is denoted by Nj = {i : (πi, πj) ∈ E }. In an undirected
graph, (πi, πj) ∈ E ⇔ (πj, πi) ∈ E . The adjacent matrix A ,
[aij] ∈ Rn×n, where aij = 1 if (πj, πi) ∈ E , and aij = 0 otherwise.
It is assumed that aii = 0. More details on network system can be
found in Ren (2010).

Definition 1. Anormal finite gameH can be formulated by (1) the
set of players: V = {π1, π2, . . . , πn}; (2) the strategy set for each
player:Xi = {xi1, xi2, . . . , xik}, where i = 1, . . . , n; and (3) the cost
function: ci(xi, x−i), where xi ∈ Xi denotes the strategy selected
by player i, and x−i denotes strategies of other players excluding
player i.

Definition 2. Nash equilibrium (NE), denoted by (x∗

1, x
∗

2, . . . , x
∗
n),

is a local optimal response for a normal finite game, where no
individual would gain by unilaterally changing its own strategy:
ci(x∗

i , x
∗

−i) ≤ ci(xi, x∗

−i).

If a game can be played repeatedly with an updating law:
Π : xi(t + 1) = f (xi(t), x−i(t), ci(t)), where t ≥ 0 denotes the
discrete sampling time, then it is named evolutionary game.

In an evolutionary game played by multiple players, a typical
updating law can be given by Unconditional Imitation with fixed
priority (Cheng et al., 2015):

xi(t + 1) = xj∗(t), j∗ = argmin
j∈Ni

cj(xj(t), x−j(t)). (1)

If j∗ is non-unique, then select the minimal j∗ as priority.

Definition 3. The networked evolutionary game is composed by
(1) a networked graph G ; (2) a normal finite game H that can be
played repeatedly; and (3) an updating law Π .

Remark 1. The above definition of the networked evolutionary
game is slightly different from that of Cheng et al. (2015), where
fundamental networked game (FNG) is required. In this paper, the
normal finite game is used in Definition 3.

Definition 4. The control networked evolutionary game is com-
posed by (1) a normal finite game H that is played repeatedly;
(2) a networked graph Gc = (X ∪ U , E ), where {X , U } is a parti-
tion of V (X ∪ U = V and X ∩ U = Ø), and strategies of U can
be actively assigned; and (3) an updating law Π .

2.2. Semi-tensor product

Definition 5. The semi-tensor product of two matrix A ∈ Rm×n

and B ∈ Rp×q can be defined by

A n B , (A ⊗ Io/n)(B ⊗ Io/p) ∈ R(mo/n)×(qo/p), (2)

where o = lcm(n, p) denotes the least common multiple of n and
p; and ⊗ denotes the Kronecker product.

Definition 6. The fundamental vector δi
n ∈ Dn is defined as the ith

column of the identity matrix In×n. It can be further defined that
δn[i, j, . . . , k] , [δi

n, δ
j
n, . . . , δ

k
n].

Theorem 1 (Cheng et al., 2015). With equivalence i ∼ δi
n, i =

1, 2, . . . , n, a logic function f : Dk
n → Dn can be rewritten by

f (x1, x2, . . . , xk) = Mf nk
i=1 xi, where Mf is the structure matrix of

logic function f .

Theorem 2 (Cheng et al., 2015). For a logic dynamic system xi(t +

1) = fi (xi(t), x−i(t)) = Mfi nn
i=1 xi, i = 1, . . . , n, it can be rewritten

in the form of

x(t + 1) = Mf x(t), (3)

where x(t) , nn
i=1 xi, andMf , Mf 1 ∗Mf 2 ∗ · · ·∗Mfn. Here, ∗ denotes

the Khatri–Rao product: M ∗N , [col1(M)ncol1(N), . . . , cols(M)n
cols(N)], where M ∈ Rp×s and N ∈ Rq×s; and coli(M) denotes the
ith column of matrix M.

Theorem 3 (Cheng et al., 2015). For a logic dynamic system given
by (3), δi

n is its fixed point, if and only if the diagonal element mii of
Mf equals 1.
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