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a b s t r a c t

We develop and analyze two distributed event-triggered linear iterative algorithms that enable the
components of a distributed system, each with some initial value, to reach approximate average consensus
on their initial values, after executing a finite number of iterations. Each proposed algorithm provides
a criterion that allows the nodes to determine, in a distributed manner, when to terminate because
approximate average consensus has been reached, i.e., all nodes have obtained a value that is within a
small distance from the average of their initial values.We focus on a distributed systemwhose underlying
topology is captured by an undirected (symmetric) graph, and develop linear iterative strategies with
time-varying weights, chosen based on the subset of edges that separate nodes with significantly
different values and are considered active at each iteration. In our simulations, we illustrate the proposed
algorithms and compare the number of iterations and transmitted values required by the proposed
protocols against a previously proposed stopping protocol for approximate average consensus.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In distributed systems and networks, it is often necessary for all
or some of the nodes (system components) to calculate a function
of certain parameters that we refer to as initial values. When all
the nodes obtain the average of these initial values, they are said
to have reached average consensus. Over the last few decades,
a variety of distributed algorithms that allow the components
to calculate different functions of their initial values have been
proposed by the control, communication, and computer science
communities (Cortés, 2008; Olfati-Saber, Alex Fax, & Murray,
2007).

✩ The material in this paper was partially presented at the 51st Annual Allerton
Conference on Communication, Control, and Computing, October 2–4, 2013,
Monticello, IL, USA and at the 52nd Annual Allerton Conference on Communication,
Control, and Computing, October 1–3, 2014, Monticello, IL, USA (Manitara &
Hadjicostis, 2013, 2014a). This paper was recommended for publication in revised
form by Associate Editor Dimos V. Dimarogonas under the direction of Editor
Christos G. Cassandras. This version of the paper focuses on undirected graphs and
provides complete proofs, examples, and simulations/comparisons against previous
work, not provided in these conference papers. It also describes and analyzes novel
enhancements to the algorithms (i.e., time-varying Metropolis weights) that allow
the nodes to reach approximate average consensus faster.
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Average consensus and, more generally, consensus have re-
ceived a lot of attention from the control community due to their
usage in various emerging distributed control applications, includ-
ing wireless smart meters (where all nodes have to determine
the average demand or consumption of the network Domínguez-
García & Hadjicostis, 2010), and multi-agent systems (where all
agents communicate with each other in order to coordinate their
direction, speed, and position Ren, Beard, & Atkins, 2005). One pop-
ular approach to consensus (to some value, not necessarily the av-
erage) is based on a linear iterative strategy, where each node in
the network repeatedly updates its value to be a weighted sum
of its own previous value and the previous values of its neigh-
bors. In particular, previous work has shown that, if the network
topology satisfies certain conditions, the weights for the linear it-
eration can be chosen such that all of the nodes in the network
converge asymptotically to the same value (which, under some ad-
ditional requirements on the weights, can be the average of their
initial values Sundaram & Hadjicostis, 2008; Xiao & Boyd, 2004).
Another popular approach to the calculation of this average value
is based on ratio-consensus (Bénézit, Blondel, Thiran, Tsitsiklis, &
Vetterli, 2010; Domínguez-García & Hadjicostis, 2010; Kempe, Do-
bra, & Gehrke, 2003), which simultaneously runs two linear itera-
tions and allows each node to asymptotically obtain the average as
the ratio of the two state variables it maintains.

The above popular approaches use simple local rules to
distributively calculate important quantities like the average. The
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main problem in the applicability of these techniques, however, is
the fact that convergence to the average is asymptotic. Typically,
this is handled by a priori determining a number of finite steps that
ensures that the nodes have values sufficiently close to the average,
but this requires knowledge of the network and the convergence
rate of the iteration. The algorithms proposed in this paper
provide an alternative that allows the nodes to approximately
calculate the average in finite time using algorithms that still
rely exclusively on local information. Perhaps more importantly,
the paper investigates the topic of distributed stopping, i.e., how
the nodes can determine when to terminate their transmissions
based on locally available information. This question has received
limited attention thus far in the control literature, with the notable
exception of Yadav and Salapaka (2007), whichwe discuss in detail
later.

In the proposed algorithms, each node makes a decision on
how to update and/or transmit its value, based on the difference
between its calculated value and the values it receives from its
neighbors. Note that, during the execution of the algorithms, a link
or a node that becomes inactive at a particular time step may be
triggered to become active at a later time step if the node value
and/or the value of at least one of its neighbors change in away that
increases their absolute difference. In both algorithms, the iterative
process (which relies on linear updateswith time-varyingweights)
ends when all nodes cease transmitting their values, in which
case they can be shown to have reached approximate average
consensus, i.e., the absolute difference between the final value of
each node and the exact average of the initial values is smaller
than an error bound, whose value depends on a parameter ε
(small real value) and the diameter D of the underlying undirected
graph. Unlike existing approaches (e.g., Yadav & Salapaka, 2007),
the proposed strategies lead to time-varying strategies and their
analysis requires tools from weak ergodicity of inhomogeneous
Markov chains. Note that dealing with digraphs (directed graphs)
poses a number of additional difficulties, see Manitara and
Hadjicostis (2014b).

2. Background

In distributed systems, we canmodel the network topology as a
directed graph (digraph)G = {X, E}where X = {1, 2, . . . , n} is the
set of components in the system (nodes) and E ⊆ X×X−{(i, i) | i ∈

X} is the set of directed communication links (edges) (West, 2001).
In particular, edge (i, j) ∈ E if node j can send information to node
i. The nodes that can transmit (receive) information to (from) node
i are said to be the in-neighbors (out-neighbors) of node i and are
represented by the setN −

i = {j | (i, j) ∈ E} (N +

i = {j | (i, j) ∈ E});
the number of in-neighbors (out-neighbors) of node i is called the
in-degree (out-degree) of node i and is denoted by D−

i = |N −

i |

(D+

i = |N +

i |). In an undirected graph (i.e., a graph for which
(i, j) ∈ E if and only if (j, i) ∈ E), the in-neighbors of node i
are identical to its out-neighbors. Thus, we refer to the neighbors
Ni = N −

i = N +

i and the degree Di = D−

i = D+

i of node i ∈ X .
A path of length t from node j to node i, i ≠ j, is a sequence

of nodes j = i0, i1, . . . , it−1, it = i, such that (il, il−1) ∈ E for
all l = 1, 2, . . . , t . The minimum distance from node j to node
i, i ≠ j, is the length of the shortest path from node j to node i;
it is denoted by dmin(i, j) and it is taken to be infinite if there is
no path from node j to node i. The graph is strongly connected (or
simply connected in the case of an undirected graph) if there exists
a path (of finite length) from each node j to each other node i. By
convention, dmin(i, i) = 0 for all i ∈ X . The diameter D of graph
G = {X, E} is defined as the longest shortest path between any
two nodes, i.e., D = maxi,j∈X,i≠j dmin(i, j).

2.1. Average consensus via a linear iterative strategy

In average consensus problems, we are given a graph G =

{X, E} that captures the topology of the distributed system. Each
node i has an initial value Vi and the objective is to calculate the
average of these initial values, which we denote by x =

1
n

n
l=1 Vl

(where n = |X | is the cardinality of the set X). We assume a
broadcast model where each node sends to all of its neighbors the
same value. Suppose that, at each time-step k, each node updates
its value as a weighted sum of its own value and the values of
its in-neighbors so that (Jadbabaie, Lin, & Stephen Morse, 2003;
Sundaram & Hadjicostis, 2008)

xi[k + 1] = piixi[k] +


j∈N −

i

pijxj[k], (1)

where pij form a set of (fixed)weights and xi[0] = Vi. The values for
all the nodes at time-step k can be aggregated into the value vector
x[k] = [x1[k], x2[k], . . . , xn[k]]T (where T denotes matrix/vector
transposition) and the update strategy for the entire network can
be written compactly as

x[k + 1] = Px[k], k ∈ N, (2)

where x[0] = [V1, V2, . . . , Vn]
T and matrix P = [pij], with the

weights pij satisfying pij = 0 if j ∉ N −

i ∪ {i}.

Theorem 1 (Xiao & Boyd, 2004). Iteration (2) reaches asymptotic
consensus on the linear functional cT x[0] for some column vector c
(under the technical condition that c is normalized so that cT1 = 1
where 1 = [1, 1, . . . , 1]T is the all ones column vector) if and only if
the weight matrix P satisfies the conditions below:
(1) P has a simple eigenvalue at 1, with left eigenvector cT and right
eigenvector 1;
(2) All other eigenvalues of P have magnitude strictly less than 1.

In particular, if c =
1
n1, then average consensus is reached. Also

note that if pij are restricted to be nonnegative, then the above
conditions for asymptotic average consensus are equivalent to P
being a primitive doubly stochastic matrix.

2.2. Average consensus via ratio consensus

The ratio consensus algorithmperforms in parallel two iterative
computations (of the type in (1)) and allows each node to
asymptotically obtain the exact average of the initial values as the
ratio of the two state variables that it maintains. More specifically,
each node imaintains, at iteration k, state variables yi[k] and zi[k],
and updates them, for k ∈ N, as

yi[k + 1] =


j∈N −

i ∪{i}

yj[k]/(1 + D+

j ), (3)

zi[k + 1] =


j∈N −

i ∪{i}

zj[k]/(1 + D+

j ), (4)

with yi[0] = Vi and zi[0] = 1, for i ∈ X . At each time step k,
each node i also calculates the ratio ri[k] = yi[k]/zi[k]; under the
assumption that the digraph describing the exchange of informa-
tion is strongly connected, it can be shown that ri[k] asymptotically
converges to the average of the initial values (Domínguez-García &
Hadjicostis, 2010). Specifically, with the chosen initial conditions,
we have that

lim
k→∞

ri[k] =


l
yl[0]

l
zl[0]

=


l
Vl

n
, ∀i ∈ X . (5)
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