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a b s t r a c t

The current theoretical study on the synchronizationmechanism of complex networks mainly focuses on
fixed connected topology or switching balanced topology,which is heavily based on constructing common
smooth Lyapunov functions. However, for complex networks with nonlinear node dynamics, it is still
unknown whether such kind of networks can synchronize under the condition of switching, directed,
and disconnected topology. By employing the ideas of sequential connectivity and joint connectivity, this
paper finds that complex networks with one-sided Lipschitz node dynamics can realize synchronization
even if the network topology is not connected at any time instant. By iteratively estimating the maximal
distance between different nodes, this paper gives several sufficient conditions on synchronization
of nonlinear complex networks under switching disconnected topology. Finally, simulation examples
validate the main results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Complex networks are a typical type of complex systems, rep-
resenting the complex interactions among different components.
Multitudes of social, biological and engineering systems can be
described and analyzed by complex networks (Albert & Barabási,
2002). Historically, the investigation of complex networks can be
traced back to the discovery of the fundamental scale-free and
small-world networks (Strogatz, 2001; Watts & Strogatz, 1998).
Based on these innovative models, many interesting results have
been reported in the field of complex networks, towards to the un-
derstanding of the origin of complexity.

Synchronization is one of the typical collective behaviors of
complex networks (Arenas, Diaz-Guilera, Kurth, Moreno, & Zhou,
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2008), which means the states of a system reach some identical
value or trajectory asymptotically. Synchronization also has some
important engineering applications, such as clock synchroniza-
tion of sensor networks and distributed power generation (Blaab-
jerg, Teodorescu, Liserre, & Timbus, 2006). During the past decade,
a great number of interesting results have been reported in the
field of network synchronization from different perspectives (Lü
& Chen, 2005). It should be pointed out that most of the exist-
ing results only concern the dynamical behavior of complex net-
workswith fixed topology,which can be generally attributed to the
master equation method (Li, Duan, Chen, & Huang, 2010; Pecora &
Carroll, 1998) or Lyapunov method (Yu, Chen, & Lü, 2009). Never-
theless, due to the complex environment inwhich thenetworks are
involved, the network topology itself may also be dynamic, called
dynamic or switching topology. However, there are few reported
results focusing on synchronization of nonlinear complex net-
works with switching topology, especially disconnected topology.

The reliability of communication links in complex networks
plays a critical role for network synchronization. Though existing
results demonstrate the synchronizability of complex networks
under the condition of fixed topology (Li et al., 2010), it remains
an interesting issue to ask whether complex networks can realize
synchronization under imperfect communication. Recently, in
the field of multi-agent systems (MAS), some interesting results
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demonstrate that MAS can reach synchronization under the
condition of fast switching topology (Kim, Shim, Back, & Seo, 2013),
jointly connected and sequentially connected topology (Angeli &
Bliman, 2009; Chen, Lü, Yu, & Hill, 2013; Chen, Yu, Li, & Feng,
2013; Hong, Gao, Cheng, & Hu, 2007; Jadbabaie, Lin, & Morse,
2003; Ren & Beard, 2005). Here, joint (or sequential) connectivity
means the topology is not necessarily connected at any time
instant but connected over a time interval (Cao,Morse, &Anderson,
2008). Inspired by these findings, it is natural to ask whether
complex networks can reach synchronization under the condition
of sequential or joint connectivity.

As far as we know, there does not exist a result which discusses
the synchronization of nonlinear complex networks under the
condition of jointly connected topology. Furthermore, even for the
simplest case of networked linear systemwith switching topology,
the widely used quadratic or smooth Lyapunov function does
not exist (Brayton & Tong, 1979; Olshevsky & Tsitsiklis, 2008).
Considering the nonlinear dynamics involved in the model of
complex networks, solving such a problem becomes even more
difficult. Therefore, it is necessary to develop novel techniques to
handle the synchronization problem in case of switching topology.
The major contribution of this paper is: it employs the ideas
of sequential and joint connectivity, and proves that complex
networks with one-sided Lipschitz node dynamics can realize
synchronization under the condition of switching, directed, and
disconnected topology.

This paper is organized as follows: Section 2 gives some
preliminaries on graph theory; Section 3 presents themain results;
Section 4 illustrates the details of technical proof; Section 5 gives a
simulation example to verify themain results; Section 6 concludes
this paper.

2. Preliminaries

AgraphG = {V , E} is composed of two sets:V is the set of nodes
and E ⊆ V × V is the set of edges. Given two graphs G1 = {V , E1}
and G2 = {V , E2}, the union of these two graphs is defined by
G1 ∪ G2 = {V , E1 ∪ E2}. A graph G = {V , E} is called strongly
connected if there exists a path from any node i ∈ V to j ∈ V
(i ≠ j). A graph G = {V , E} is called connected if for any pair of
vertices i, j (i ≠ j), there exists a path from i to j or from j to i. If
G is connected, then G contains a spanning tree. In this paper, we
focus on complex networks with topologies described by directed
graphs.

Given any nonnegative matrix A = (aij)Ni,j=1 ∈ RN×N , the graph
corresponding to A is given by G(A) = {V , E}, that is (j, i) ∈ E if
and only if aij > 0.

Given a graph G = {V , E}, for any V ⊆ V , define

∂(G, V) = {j : i ∈ V, (i, j) ∈ E} .

Intuitively speaking, ∂(G, V) is the set of nodes in which each one
has a link pointed from a corresponding node in V .

A sequence of graphs {Gi}
m
i=1 is jointly connected if

m
i=1 Gi

contains a spanning tree (Jadbabaie et al., 2003).
A sequence of graphs {Gi}

m
i=1 is sequentially connected (Angeli

& Bliman, 2009) if there exists Vk ⊆ V (1 ≤ k ≤ m+1) satisfying2

Vk+1 ⊆ ∂(Gk, Sk), Sk =

k
s=1

Vs,

where S1 = V1 is a singleton and Sm+1 = V .

2 The definition of sequential connectivity for continuous-time networks (1) is
different from that of discrete-time networks in that: there is no self-loop required
in the continuous-time case.

The intuitive meaning of sequential connectivity can be ex-
plained as follows. When {Gi}

m
i=1 is sequentially connected, there

exists a node, called i∗ (i.e. S1 = {i∗}), sends information to its
neighbors V2 at time t1, then those who have received the infor-
mation, called S2, send the information to their neighbors V3 at
time t2, repeat the above process and finally all the nodes can get
this information at time tm+1.

3. Model, assumptions and main results

Let V = {1, 2, . . . ,N} be the set of nodes and consider the
following complex network with nonlinear node dynamics (Yu
et al., 2009)

ẋi(t) = f (xi(t)) + c
N
j=1

aij(t)(xj(t) − xi(t)), i ∈ V . (1)

Here, xi(t) ∈ Rn, f : Rn
→ Rn is the nonlinear vector function,

c ∈ R is the coupling coefficient, and aij(t) ∈ R are piecewise
functions satisfying aij(t) ≡ 0 or aij(t) ≡ 1 in each interval
[tk, tk+1),3 where tk = (k − 1)h and h is the sampling step.4 Let
aii(t) = 0 for any t ≥ 0 and i ∈ V . Denote that

Ak = (aij(t))Ni,j=1

in [tk, tk+1). Synchronization of complex networks (1) implies that

lim
t→∞

∥xi(t) − xj(t)∥ = 0

for any i, j ∈ V .
The following assumptions are needed throughout the paper:

Assumption 1. The nonlinear function f is one-sided Lipschitz,
which means there exists L ∈ R such that for any x, y ∈ Rn, the
following inequality holds:

(x − y)T (f (x) − f (y)) ≤ L∥x − y∥2.

Assumption 2. There exists some integer T > 0 such that the
sequence of graphs {Gk}

rT
k=(r−1)T+1 is sequentially connected for any

r ≥ 1, ch ≤ 1, and

eLTh

1 − (che−2(N−1)ch)T


< 1. (2)

Assumption 1 stresses the requirement for the nonlinear function
f (·), Assumption 2 establishes the relationship between coupling
coefficient c and sampling interval h under the condition of
sequentially connected topology, respectively.

According to Abbaszadeh and Marquez (2010), any Lipschitz
function is one-sided Lipschitz, but the converse is not true.
This means that for some nonlinear function with big Lipschitz
constant, the corresponding one-sided Lipschitz constant Lmay be
very small or even negative (see, the example given in Section 5).
In the case that L ≤ 0, it is easy to verify the condition 2 is naturally
satisfied, leading to the unconservatism of the given assumptions.

The main result of this paper can be illustrated as follows.

Theorem 3. If Assumptions 1 and 2 hold, then complex net-
work (1) reaches synchronization.

3 We make this requirement only to simplify the technical proof, aij(t) can be
generalized to the time-varying case by using the same method of this paper.
4 By using the same method in Section 4, the sampling interval h can be

generalized to non-evenly distributed hk , we omitted the detailed deduction due
to restriction of space.
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