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a b s t r a c t

We consider Ponomarev’s recent predictor-based control design for nonlinear systems with distributed
input delays and remove certain restrictions to the class of systems by performing the stability analysis
differently. We consider nonlinear systems that are not necessarily affine in the control input and whose
vector field does not necessarily satisfy a linear growth condition. Employing a nominal feedback law,
not necessarily satisfying a linear growth restriction, which globally asymptotically, and not necessarily
exponentially, stabilizes a nominal transformed system, we prove global asymptotic stability of the
original closed-loop system, under the predictor-based version of the nominal feedback law, utilizing
estimates on solutions. We then identify a class of systems that includes systems transformable to a
completely delay-free equivalent for which global asymptotic stability is shown employing similar tools.
For these two classes of systems, we also provide an alternative stability proof via the construction of
a novel Lyapunov functional. Although in order to help the reader to better digest the details of the
introduced analysis methodology we focus on nonlinear systems without distributed delay terms, we
demonstrate how the developed approach can be extended to the case of systems with distributed delay
terms as well.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background and motivation

In Ponomarev (in press) the following class of systems is
considered

Ẋ(t) = f (X(t))+ B1 (X(t))U(t − D)+ B0 (X(t))U(t)

+

 0

−D
Bint (θ, X(t))U(t + θ)dθ, (1)

where X ∈ Rn is state, U ∈ R is control input, D > 0 is a delay,
t ∈ R is time, f : Rn

→ Rn is vector field, andB0, B1 : Rn
→ Rn and

Bint : [−D, 0]×Rn
→ Rn are input vector fields. A predictor-based

control law is designed in Ponomarev (in press) for the stabilization
of (1).

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Hiroshi Ito under
the direction of Editor Andrew R. Teel.
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krstic@ucsd.edu (M. Krstic).

In this article, we consider the following system

Ẋ(t) = f (X(t),U(t − D),U(t)) , (2)

under a predictor-based control law that is constructed employing
the design tools introduced in Ponomarev (in press).

Numerous recent results on the predictor-based stabilization of
nonlinear systems controlled only through a single input channel
with delay are reported, including systems with constant (Krstic,
2009, 2010; Mazenc & Malisoff, 2014), state-dependent (Bekiaris-
Liberis & Krstic, 2013a,b,c), input-dependent (Bresch-Pietri, Chau-
vin, & Petit, 2014), and unknown (Bresch-Pietri & Krstic, 2014)
delay, systems stabilized under sampling (Karafyllis & Krstic,
2012), positive systems (Mazenc & Niculescu, 2011), as well as
the introduction of approximation and implementation schemes
(Karafyllis, 2011; Karafyllis & Krstic, 2013, 2014). Despite the sev-
eral recent developments, the problems of stabilization and of
stability analysis of nonlinear systems of the form (1) and (2)
are rarely investigated (Mazenc, Niculescu, & Bekaik, 2013; Pono-
marev, in press) (see also Marquez-Martinez & Moog, 2004; Xia,
Marquez-Martinez, Zagalak, & Moog, 2002 that adopt an algebraic
approach), although both predictor-based design techniques, in-
cluding classical reduction approaches (Artstein, 1982; Manitius &
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Olbrot, 1979; Mondie & Michiels, 2003), optimal (Ariola & Pironti,
2008; Shuai, Lihua, & Huanshui, 2008) and robust (Chen & Zheng,
2002; Yue, 2004) control methods, and nested prediction-based
control laws (Zhou, 2014), aswell as analysis tools (Bekiaris-Liberis
& Krstic, 2011; Fridman, 2014; Li, Zhou, & Lam, 2014; Mazenc,
Niculescu, & Krstic, 2012; Ponomarev, 2016) exist for the linear
case.

Besides the theoretical significance of studying systems of
the form (1) and (2), which lies in the fact that the classic
linear predictor-based control design approach is extended to the
nonlinear case, systems of the form (1) and (2) appear in various
applications such as networked control systems (Goebel, Munz,
& Allgower, 2010; Roesch, Roth, & Niculescu, 2005), population
dynamics (Artstein, 1982), and combustion control (Xie, Fridman,
& Shaked, 2001; Zheng & Frank, 2002), among several other
applications (Niculescu, 2001; Richard, 2003).

1.2. Contribution

For system (2) we design a predictor-based control law fol-
lowing the design procedure developed in Ponomarev (in press).
Specifically, we first define the transformation Z of the state X de-
fined as

p(x, t) = X(t)+

 x

0
f (p(y, t), u(y, t), 0) dy, x ∈ [0,D] (3)

Z(t) = p(D, t), (4)

where we use the following, transport PDE representation of the
actuator state U(θ), θ ∈ [t − D, t],

ut(x, t) = ux(x, t), x ∈ [0,D] (5)
u(D, t) = U(t), (6)

which transforms system (2) to a new system of the form1

Ż(t) = F (Z(t),Ut ,U(t)) , (7)

where the function Ut is defined by Ut(s) = U(t + s), for all
s ∈ [−D, 0]. The control law that stabilizes system (7)2 is given
for all t ≥ 0 by

U(t) = κ (Z(t),Ut) . (8)

Although the predictor-based design (8), (4), (3) is derived
by employing the design methodology developed in Ponomarev
(in press), in this article we introduce novel stability analysis
tools, which, in comparison with Ponomarev (in press), allows
one to remove the plant and controller growth restrictions,
as well as the requirements that the control be affine and
that the nominal controller achieves exponential stability of the
transformed system. Specifically, we prove global asymptotic
stability for systems that are not necessarily affine in the control,
without necessarily imposing a linear growth condition either on
the vector field or the nominal controller and without assuming
that the nominal control law achieves exponential stability. Our
stability analysis is based on estimates on closed-loop solutions.

We also identify a class of systems that includes systems
transformable to a completely delay-free equivalent andwhichwe
categorize into two different types of systems. For this class of
systems we also construct a novel Lyapunov functional with the
aid of which we prove global asymptotic stability of the closed-
loop system, thus providing an alternative stability proof.

1 For the sake of clarity of presentation the exact form of F is given in Section 2.
2 The specific properties of the closed-loop system and κ are specified in

Section 2.

Although in order to help the reader to better understand the
conceptual ideas of our methodology we concentrate on systems
of the form (2), i.e., without distributed delay terms, the same tools
can be applied to systems with distributed delay terms of the form

Ẋ(t) = f

X(t),U(t − D),

 t

t−D
b1(θ − t)U(θ)dθ, . . . , t

t−D
bm(θ − t)U(θ)dθ,U(t)


. (9)

1.3. Organization

In Section 2 we prove global asymptotic stability under
predictor-based feedback for general nonlinear systems. In Sec-
tion 3 we identify a class of systems that includes systems trans-
formable to a delay-free equivalent. For this class of systems we
construct a Lyapunov functional with the aid of which we prove
global asymptotic stability under predictor-based feedback in Sec-
tion 4. We illustrate the fact that the developed approach can be
applied to systems with distributed delay terms in Section 5.

Notation:We use the common definition of class K , K∞, and KL
functions from Khalil (2002). For an n-vector, the norm | · | denotes
the usual Euclidean norm. For a function u : [0,D] × R+ → R
we denote by ∥u(t)∥∞ its spatial supremum norm, i.e., ∥u(t)∥∞ =

supx∈[0,D] |u(x, t)|. For any c > 0, we denote the spatially weighted
supremum norm of u by ∥u(t)∥c,∞ = supx∈[0,D] |ecxu(x, t)|. For a
vector valued function p : [0,D] × R+ → Rn we use a spatial
supremum norm ∥p(t)∥∞ = supx∈[0,D]


p1(x, t)2 + · · · pn(x, t)2.

For a functionU : [−D,∞) → R,∀t ≥ 0, the functionUt is defined
by Ut(s) = U(t+ s), ∀s ∈ [−D, 0]. We denote by C j(A; E) the space
of functions that take values in E and have continuous derivatives
of order j on A.
Solutions:Weassume that the initial conditionU0 ∈ C ([−D, 0]; R)
is compatible with the feedback law (8), i.e., it holds that U0(0) =

κ (Z(0),U0), such that under the assumptions that κ : Rn
×

C ([−D, 0]; R) → R is locally Lipschitz and that f : Rn
×R×R →

Rn is twice continuously differentiable (Assumption 1 in Section 2),
which allows one to conclude that F : Rn

× C ([−D, 0]; R) ×

R → Rn is locally Lipschitz,3 there exists a unique solution Z(t) ∈

C1 ([0,∞),Rn) and U(t) ∈ C ([0,∞),R) (see Hale & Verduyn
Lunel, 1993; Karafyllis, Pepe, & Jiang, 2009; Mazenc et al., 2012;
Pepe, 2007; Pepe, Karafyllis, & Jiang, 2008),4 which in turn implies
from (2) that there exists a unique solution X(t) ∈ C1 ([0,∞),Rn).

2. Stability analysis for general systems

Assumption 1. The vector field f : Rn
× R × R → Rn is twice

continuously differentiable with f (0, 0, 0) = 0 and satisfies

f (X, ω,Ω)− f (X, ω, 0) = g(X,Ω) (10)

for all (X, ω,Ω)T ∈ Rn+2 and some g : Rn
× R → Rn.

3 The Lipschitzness of F (Lemma 1 in Section 2) follows by the regularity of f and
the Lipschitzness of the solutions to px(x) = f (p(x), u(x), 0), p(D) = Z with respect
to Z ∈ Rn and u ∈ C ([0,D]; R), as well as to rx(x) =

∂ f (p(x),u(x),0)
∂p r(x), r(0) = g

with respect to g ∈ Rn , p ∈ C ([0,D]; Rn) and u ∈ C ([0,D]; R) (see, e.g., Hale &
Verduyn Lunel, 1993; Khalil, 2002).
4 The fact that Z(t) and U(t) are defined on [0,∞) follows from the stability

properties of system (7), (8), which are established employing Assumption 3 in
Section 2.
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