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a  b  s  t  r  a  c  t

In  ambulatory  electroencephalogram  (EEG)  health  care  systems,  recorded  EEG signals  often  contami-
nated  by  motion  artifacts.  In this  paper,  we  proposed  a singular  spectrum  analysis  (SSA)  technique  with
new  grouping  criteria  to remove  the  motion  artifact  from  a single  channel  EEG  signal.  In  order  to  remove
the  motion  artifact  from  a single  channel  EEG  signal,  we considered  the  eigenvectors  (basis  vectors)  cor-
responding  to motion  artifact  are  grouped  or identified  based  on  their local  mobility,  which  is  a  signal
complexity  measure.  However,  as  the  local  mobility  of eigenvectors  associated  to the  motion  artifact  are
small,  a threshold  of 0.1  is set to  identify  them.  The  motion  artifact  signal  is  estimated  using the  identified
eigenvectors  and  subtracted  from  the contaminated  EEG  signal  to  obtain  the  corrected  EEG signal.  The
proposed  technique  is  tested  on  21  single  channel  real  EEG  signals  contaminated  by motion  artifact  and
compared  the  results  with  the  existing  combined  ensemble  empirical  mode  decomposition  and  canoni-
cal  correlation  analysis  (EEMD-CCA)  technique.  The  simulation  results  show  that  the  proposed  modified
SSA  enjoys  an  improvement  in  the  signal  to  noise  ratio  and  the  percentage  reduction  in artifact.  More-
over,  as the  ambulatory  EEG  systems  are battery  operated,  use  of  high  computational  signal  processing
techniques  will  reduce the  battery  lifetime.  Hence,  low  computational  signal  processing  techniques  are
greatly  demanded  in  such  applications.  Thus,  we  have  also  evaluated  the  computational  complexity  of  the
proposed  technique  and  compared  with  EEMD-CCA.  We  found  that  the  proposed  modified  SSA  technique
significantly  reduces  the  computational  complexity  and  thereby  lower  power  consumption  compared  to
the  EEMD-CCA.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Ambulatory electroencephalogram (EEG) test is commonly per-
formed to record the electrical activity of the brain for a long period
and is often preferred where the diagnosis is unclear. Since the
ambulatory EEG test allows the subject to move around, recorded
EEG signals often contaminated by motion artifacts along with the
common artifacts, such as ocular and muscle artifacts [1]. Inde-
pendent component analysis (ICA) is a blind source separation
technique often used to remove the artifacts from multichannel
EEG signals [2,3]. In literature, few works have been reported
to remove the motion artifacts from the multichannel EEG sig-
nals [1,4]. In [4], canonical correlation analysis (CCA) [5] has been
employed to observe the extent to which the motion artifact is
reflected in skin-electrode contact impedance. The use of CCA on
multichannel EEG signals to remove the muscle artifacts has been
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presented in [6]. The difference between ICA and CCA is that the
former uses the higher order statistics (HOS) to extract the source
signals, whereas the later uses second order statistics (SOS). Since
ICA uses HOS, the computational complexity of ICA is more than
CCA.

In general, the ambulatory EEG system uses few EEG channels
to reduce the cumbersome to the subject and maintain the mini-
mum  instrumentation complexity [7–9]. However, the techniques
presented in [1–4], cannot be implemented for analysis of single
channel EEG signals. The application of ICA on single channel sig-
nals has been proposed in [10]. However, this technique is not
suitable to remove the artifacts from a single channel EEG signal
due to the following two  constraints: first, the signal of interest
should be a stationary signal and secondly, the interested source
signals should be disjoint in frequency domain. In [11], the ensem-
ble empirical mode decomposition (EEMD) [12] and ICA techniques
are jointly used to remove different artifacts from a single chan-
nel EEG and electromyogram (EMG) signals. In ambulatory EEG
systems, as high computational signal processing algorithm con-
sumes more power, use of such algorithms will reduce the battery
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lifetime [13]. So, low computational, as well as the single channel
operated signal processing techniques, are great demand in such
applications. Even though ICA has been employed for the removal
of different artifacts from a single channel EEG signals, it suffers
from high computational complexity. Since CCA involves less com-
putations compared with ICA, use of such algorithm reduces the
computational complexity of artifact removal system. However, the
CCA technique is mostly suitable for analysis of multichannel EEG
signals. In order to employ CCA on single channel EEG signals, first,
the single channel signal has to be mapped into multivariate data.
Recently, in [14], a combined EEMD and CCA technique, namely
EEMD-CCA, has been proposed to remove the motion artifact from a
single channel EEG signal. In this technique, first, the single channel
signal is mapped into multivariate signal or data by decomposing
it into a set of oscillating components, also called intrinsic mode
functions (IMFs), using EEMD. Later, CCA extracts the source sig-
nals from the multivariate data and its delayed version. However,
EEMD involves computationally intensive operations and hence
increases the computational complexity of the overall EEMD-CCA
technique. Moreover, EEMD-CCA technique exhibits poor perfor-
mance to remove the low-frequency motion artifact.

In this paper, we propose a modified singular spectrum analysis
(SSA) technique [15,16] with new grouping criteria to remove the
motion artifact from a single channel EEG signal and compared its
computational complexity with the existing EEMD-CCA technique.
The proposed modified SSA technique is tested on the single chan-
nel EEG signals, contaminated by motion artifact, and is compared
with the existing EEMD-CCA technique in terms of computational
complexity, signal to noise ratio (SNR) and the percentage reduc-
tion in artifact. The simulation results show that an improvement
in signal to noise ratio (SNR), as well as the percentage reduction in
the artifact, is achieved with lower computational complexity than
EEMD-CCA.

The organization of the paper is as follows: In Section 2, we
briefly discuss the existing EEMD-CCA technique. Proposed SSA
technique is discussed in Section 3. The computational complexity
analysis of existing and the proposed SSA techniques are discussed
in Section 4 showing the superiority of the proposed method over
EEMD-CCA. Simulation studies of both techniques are presented in
Section 5. Finally, Section 6 concludes the paper.

2. Existing method

2.1. EEMD-CCA

Blind source separation (BSS) is a method of separating the
source signals from a group of mixed signals without knowing
the prior information about the source signals. The CCA finds the
solution to the BSS problem by imposing the constraint that the
sources are maximally auto-correlated and mutually un-correlated
[6]. Consider a data matrix U(t) mixed with J sources, having N num-
ber of samples and let the data matrix V(t), one sample delayed
version of U(t), i.e. V(t) = U(t − 1). Then, CCA finds the basis vector
wu and wv corresponding to U and V respectively, such that the cor-
relation coefficient � between the variates x = wT

uU and y = wT
vV is

maximized. The expression for correlation coefficient � is given by

� = wT
uCuvwv√

(wT
uCuuwu)(wT

vCvvwv)
(1)

where Cuu and Cvv are auto-covariance matrices of U and V respec-
tively, and Cuv is the cross-covariance matrix of U and V. The
maximum value of � is obtained by taking the derivative of (1) with

respect to wu and wv, and equating to zero. The resulting equations
following the two eigenvalue problems [17] are

C−1
uu CuvC−1

vv CT
vuŵu = �2ŵu

C−1
vv CvuC−1

uu CT
uvŵv = �2ŵv

(2)

Since the data matrices U(t) and V(t) differ by one sample, finding
the basis vector ŵu is sufficient to extract the source signals.

Using CCA, the minimum condition to extract the source sig-
nals from the two data sets U and V as given in [18,19] can be
represented by

| �(i)
u,v | /= | �(k)

u,v | 1 ≤ i < k ≤ J (3)

where | �(i)
u,v | represents the correlation coefficient between the

ith source from the data set U and V. Since the CCA operates on
multichannel EEG signals, this technique cannot be used for single
channel EEG signals. In order to extract the source signals from a
single channel EEG signal using CCA, first, the single channel EEG
signal needs to be converted into a multivariate signal before apply-
ing to CCA. However, such conversion from a single channel signal
into a multivariate signal can be efficiently performed using EEMD.
Hence, the combined EEMD-CCA technique can be used to separate
the sources from a single channel EEG signal too.

However, in the process of removing low-frequency motion arti-
fact signal from a single channel EEG, the EEMD-CCA exhibits poor
performance because of the fact that the correlation coefficients
of the two  hidden sources are approximately the same, i.e.
| �(i)

u,v |≈| �(k)
u,v |, 1 ≤ i < k ≤ J. Moreover, the EEMD-CCA algorithm

also suffers from the high computational complexity resulting from
computationally intensive operations such as the matrix inversion
involved in (2) and hence makes the real time processing difficult.

3. Proposed singular spectrum analysis technique with
new a grouping criteria

3.1. SSA

In general, removal of artifact from a measured signal is consid-
ered as an inverse problem, i.e.,  reconstructing the desired signal
from contaminated signal. The model assumed for the contami-
nated EEG signal is as follows: consider the measured EEG signal
d(n) = s(n) + a(n), n = 1, 2, . . .,  N, where, s(n) and a(n) are samples
of true EEG and motion artifact signals respectively and N is the
number of samples. The removal of motion artifact from contam-
inated EEG signal using SSA involves four basic steps: embedding,
decomposition, grouping and reconstruction. The embedding step
involves the mapping of a single channel signal, d = [d(1), d(2), . . .,
d(N)] into a multivariate signal represented by a trajectory matrix

D =

⎡
⎢⎢⎢⎣

d(1) d(2) · · · d(K)

d(2) d(3) · · · d(K + 1)
...

... ·  · ·
...

d(M) d(M + 1) · · · d(N)

⎤
⎥⎥⎥⎦ (4)

where M is the window length, K = N − M + 1. The window length
M is chosen based on the criteria M > fs/f, where, fs is the sampling
frequency and f is the frequency of the signal of interest [20]. Let
S and A are the trajectory matrices of the desired EEG and motion
artifact signals s(n) and a(n) respectively. Then the trajectory matrix
of a measured signal d(n) = s(n) + a(n) is given by D = S + A, where the
trajectory matrix A has to be estimated from D.

The second step in SSA is performing the singular value decom-
position (SVD) on the trajectory matrix D = Q�R, where, Q and
R are left and right orthogonal matrices, whose columns are the
eigenvectors of the covariance matrix of D and � is the rectangular
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