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a b s t r a c t

This article treats two problems dealing with control of linear systems in the presence of a jammer that
can sporadically turn off the control signal. The first problem treats the standard reachability problem,
and the second treats the standard linear quadratic regulator problem under the above class of jamming
signals. We provide necessary and sufficient conditions for optimality based on a nonsmooth Pontryagin
maximum principle.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Given a controllable linear system

ẋ(t) = Ax(t) + Bu1(t)

with x(t) ∈ Rd and u1(t) ∈ Rm,2 we let a jammer corrupt the con-
trol u1 with a signal t −→ u2(t) ∈ {0, 1} that enters multiplica-
tively, and that can sporadically be ‘‘turned off’’, i.e., set to 0. The
effect, therefore, of u2 turning off is that the control u1 is deacti-
vated simultaneously, and the system evolves in open-loop. The
signal u2 provides a standard model for denial-of-service attacks
for control systems inwhich the controller communicateswith the
plant over a network, and suchmodels have been extensively stud-
ied in the context of cyberphysical systems; see, e.g., Raymond and
Midkiff (2008) and the references therein. In this setting we ask
whether it is possible to construct a control t −→ u1(t) to execute
the transfer of states of the resulting system

ẋ(t) = Ax(t) + Bu1(t)u2(t) (1)
from given initial to given final states. Or, for instance, whether
it is possible to stabilize the resulting system (1) to the origin by
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suitably designing the control u1. Since both these problems are
trivially impossible to solve if the jammer turns the signal u2 ‘off’
entirely, to ensure a well-defined problem, in the adaptive control
literature typically a persistence of excitation condition, such as,
there exist T , ρ > 0 such that for all t we have 1

T

 t+T
t u2(s) ds > ρ,

is imposed on u2. Very little, however, is known about either reach-
ability or stabilizability of (1) under the above persistence of ex-
citation condition. In particular, the problem of designing a state
feedback u1(t) := K(t)x(t) such that the closed-loop system is
asymptotically stable under the preceding persistence of excita-
tion condition, is open, with partial solutions reported in Mazanti,
Chitour, and Sigalotti (2013), Srikant and Akella (2009).

In this article, we study two problems concerning the control
system (1). In the first problem, we turn the above-mentioned
reachability question around and examine the limits of favourable
conditions for the jammer.We ask the question: how long does the
jamming signal u2 need to be set to ‘on’ or 1 for the aforementioned
reachability problem to be solvable? To wit, we are interested in
the limiting condition such that if the jamming signal u2 is set
to ‘off’ or 0 for any longer time, then the standard reachability
problem for (1) under the control u1 would cease to be feasible.
More precisely, we study the optimal control problem: given initial
time t̄ and final time t̂ > t̄ ,

minimize
u1,u2

∥u2∥L0([t̄,t̂])

subject to


ż(t) = Az(t) + Bu1(t)u2(t) for a.e. t ∈ [t̄, t̂],
z(t̄) = z̄ ∈ Rd, z(t̂) = ẑ ∈ Rd,

u1 : [t̄, t̂] −→ U ⊂ Rm compact,
u2 : [t̄, t̂] −→ {0, 1},
u1, u2 Lebesgue measurable.

(2)

http://dx.doi.org/10.1016/j.automatica.2016.03.026
0005-1098/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2016.03.026
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2016.03.026&domain=pdf
mailto:srikant.sukumar@iitb.ac.in
mailto:dchatter@iitb.ac.in
http://dx.doi.org/10.1016/j.automatica.2016.03.026


296 S. Srikant, D. Chatterjee / Automatica 70 (2016) 295–302

Here the cost function is the L0-seminormof the control u2, defined
to be the Lebesguemeasure of the set of times at which the control
is non-zero, i.e.,

∥u2∥L0([t̄,t̂]) := Leb


s ∈ [t̄, t̂]
 u2(s) ≠ 0


.

We assume that the time difference t̂ − t̄ is larger than the
minimum time required to execute the transfer of the states from
z̄ to ẑ in order to have a well-defined problem, and in addition
assume that 0 ∈ Rm is contained in the interior of U. Notice that
while the control u1 tries to execute the desired manoeuvre, the
control u2 tries to switch to ‘on’ for the least length of time to
enable execution of the aforementioned manoeuvre. We provide
necessary conditions for these reachability manoeuvres and in
addition provide conditions for optimality in (2).

The second problem that we study in this article is that of the
performance of the linear quadratic regulator with respect to the
control u1 in the presence of the jammer u2. We ask the question:
How good is the performance of the standard linear quadratic
regulator when the jammer corrupts the u1 signal by turning it
‘off’ sporadically? To be precise, given symmetric and non-negative
definite matrices Qf ,Q ∈ Rd×d and a symmetric and positive
definite matrix R ∈ Rm×m, initial time t̄ and final time t̂ > t̄ , we
study the following optimal control problem:

minimize
u1,u2

γ ∥u2∥L0([t̄,t̂]) +
1
2


z(t̂),Qf z(t̂)


+

1
2

 t̂

t̄


⟨z(t),Qz(t)⟩ + ⟨u1(t), Ru1(t)⟩


dt

subject to


ż(t) = Az(t) + Bu1(t)u2(t) for a.e. t ∈ [t̄, t̂],
z(t̄) = z̄ ∈ Rd,

u1 : [t̄, t̂] −→ Rm,

u2 : [t̄, t̂] −→ {0, 1},
u1, u2 Lebesgue measurable,

(3)

where γ > 0 is a fixed constant. If u2 is set to ‘off’ for the
entire duration [t̄, t̂], the cost accrued by the quadratic terms
corresponding to an L2([t̄, t̂]) cost involving the states z and
the control u1 will be high. If u2 is set to ‘on’ for the entire
duration [t̄, t̂], the cost corresponding to ∥u2∥L0([t̄,t̂]) will be high.
Any solution to the optimal control problem (3) strikes a balance
between the two costs: L2([t̄, t̂])-costs with respect to u1 and the
states, and the L0([t̄, t̂])-cost with respect to u2. As in the case of
(2), we provide necessary conditions for solutions to (3), and in
addition provide sufficient conditions for optimality in (3).

It turns out that the optimal control u∗

1 corresponding to
the optimal control problem (2) is the sparsest control that
achieves the steering of the states from z̄ to ẑ within the allotted
time t̂ − t̄—see Remark 4. The optimal control problem (3) is
closely related to the ‘‘sparse quadratic regulator’’ problem treated
in Jovanović and Lin (2013); see Remark 8. While the authors
of Jovanović and Lin (2013) approached the optimal control
problem using approximate methods via L1 and total variation
relaxations, it is possible to tackle the problemdirectlywithout any
approximations, as we demonstrate in Remark 8. Sparse controls
are increasingly becoming popular in the control community
with pioneering contributions from Bahavarnia (2015), Fardad,
Lin, and Jovanović (2014), Ikeda and Nagahara (2014), Jovanović
and Lin (2013), Lin (2013), Lin, Fardad, and Jovanović (2011),
Nagahara (2016), Nagahara, Quevedo, and Nešić (2014), Polyak
(2014) and Polyak, Khlebnikov, and Shcherbakov (2013). Two
distinct threads have emerged in this context: one, dealing with
the design of sparse control gains, as in Bahavarnia (2015), Polyak
et al. (2013), Polyak (2014), and two, dealing with the design of
sparsest control maps as functions of time, as evidenced in the
articles (Ikeda & Nagahara, 2014; Jovanović & Lin, 2013; Nagahara,
2016; Nagahara et al., 2014). With respect to Bahavarnia (2015),

Polyak et al. (2013), Polyak (2014) our work differs in the sense
that we do not design sparse feedback gains, but are interested
in the design of sparse control maps that attain certain control
objectives. The articles (Ikeda & Nagahara, 2014; Jovanović & Lin,
2013; Nagahara, 2016; Nagahara et al., 2014) deal with L0-optimal
control problems, but none of them treat the precise conditions for
L0-optimality, preferring instead to approximate sparse solutions
with the aid of L1-regularized optimal control problems. To the best
of our knowledge, this is the first time that the two optimal control
problems (2) and (3) are being studied.

Observe that both the optimal control problems (2) and
(3) involve discontinuous instantaneous cost functions, and are
consequently difficult to solve. We employ a nonsmooth version
of the Pontryagin maximum principle to solve these two problems
and study the nature of their solutions. Insofar as the existence
of optimal controls is concerned, once again, the discontinuous
nature of the instantaneous cost functions lends a nonstandard
flavour to the above two problems. We derive our sufficient
conditions for optimality with the aid of what is known as an
inductive technique. These results are presented in Section 2. We
provide detailed numerical experiments in Section 3 and conclude
in Section 4.

Our notations are standard; in particular, for a set S we let 1S(·)
denote the standard indicator/characteristic function defined by
1S(z) = 1 if z ∈ S and 0 otherwise, and we denote by ⟨v, w⟩ =

v⊤w the standard inner product on Euclidean spaces.

2. Main results

We apply the nonsmooth maximum principle Clarke (2013,
Theorem 22.26) to the optimal control problems (2) and (3), for
which we first adapt the aforementioned maximum principle
from Clarke (2013) to our setting, and refer the reader to Clarke
(2013) for related notations, definitions, and generalizations:

Theorem 1. Let −∞ < t̄ < t̂ < +∞, and let U ⊂ Rm denote a
Borel measurable set. Let a lower semicontinuous instantaneous cost
function Rd

× U ∋ (ξ , µ) −→ Λ(ξ , µ) ∈ R, with Λ continuously
differentiable in ξ for every fixedµ,3 and a continuously differentiable
terminal cost function ℓ : Rd

× Rd
−→ R be given. Consider the

optimal control problem

minimize
u

ℓ

x(t̄), x(t̂)


+

 t̂

t̄
Λ

x(t), u(t)


dt

subject to


ẋ(t) = f


x(t), u(t)


for a.e. t ∈ [t̄, t̂],

u(t) ∈ U for a.e. t ∈ [t̄, t̂],
u Lebesgue measurable,
x(t̄), x(t̂)


∈ E ⊂ Rd

× Rd,

(4)

where f : Rd
× Rm

−→ Rd is continuously differentiable, and E is a
closed set. For a real number η, we define the Hamiltonian Hη by

Hη(x, u, p) = ⟨p, f (x, u)⟩ − ηΛ(x, u).

If [t̄, t̂] ∋ t −→

x∗(t), u∗(t)


is a local minimizer of (4), then there

exist an absolutely continuous map p : [t̄, t̂] −→ Rd together with a
scalar η equal to 0 or 1 satisfying the nontriviality condition
η, p(t)


≠ 0 for all t ∈ [t̄, t̂], (5)

the transversality condition
p(t̄), −p(t̂)


∈ η∂xℓ


x∗(t̄), x∗(t̂)


+ NL

E


x∗(t̄), x∗(t̂)


, (6)

3 Recall that a map ϕ : X −→ R from a topological space X into the real numbers
is said to be lower semicontinuous if for every c ∈ R the set {z ∈ X | ϕ(z) 6 c} is
closed.
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