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a b s t r a c t

We study a generalized integrator consensus network, each node of which is a single-integrator
cascaded with some heterogeneous non-integrator internal dynamics. Under the assumption that the
interconnection graph is undirected and connected, we first investigate the convergence property of
the consensus network and show that the interconnection is beneficial for the enhancement of the
convergence rate if the non-integrator internal dynamics of each node is strictly passive. We then show
that the interconnection is also advantageous for the disturbance attenuation in the consensus network.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A significant amount of research efforts have been focused on
consensus of multi-agent systems. One performance index for a
consensus network is its convergence rate, which characterizes the
property of how fast its individual systems reach an agreement
on their variables of interest. Olfati-Saber and Murray (2004) have
showed that the convergence rate in a single-integrator network
with an undirected topology can be characterized by the second
smallest eigenvalue of the graph Laplacian matrix associated
with the network topology, which is known as the algebraic
connectivity. For a general network, when the individual systems
are identical and linear time-invariant, one can decompose the
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network dynamics into low-order systems as done in Fax and
Murray (2002) to investigate the convergence rate of the network.

Another key performance index for a consensus network is its
disturbance attenuation property. When each node is subject to
disturbance, it is hardly expected to achieve perfect consensus. In
such a case, it is important to ensure some network performance
relative to the perfect consensus. Local controller design for
the enhancement of the disturbance attenuation property has
been studied in Li, Duan, and Chen (2011); Liu, Jia, Du, and
Yuan (2009) for consensus networks consisting of identical
linear systems. Oh, Moore, and Ahn (2014) have addressed the
network interconnection design and the local controller design for
enhancing the disturbance attenuation property of a consensus
network of linear systems.

The majority of the works described above have been focused
on the performance of consensus networks consisting of identical
systems. Though consensus of heterogeneous systems has been
recently studied in Kim, Shim, and Seo (2011); Lunze (2012);
Wieland, Sepulchre, andAllgöwer (2011), the convergence rate and
disturbance attenuation property have yet to be studied. Based on
this observation, we attempt to investigate the convergence rate
and disturbance attenuation in a generalized integrator network,
each node of which is a single-integrator cascaded with additional
heterogeneous internal dynamics and subject to exogenous
disturbance as showed in Fig. 1. In the remainder of this paper,
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Fig. 1. Block diagram for generalized integrator node.

we will refer to these additional heterogeneous dynamics as the
non-integrator internal dynamics. Here the control input for each
node is based on relative variables through undirected network
topology as clarified below. Though the generalized integrator
network has been studied in Moore, Vincent, Lashhab, and Liu
(2011); Oh, Lashhab, Moore, Vincent, and Ahn (2015); Wang and
Elia (2010), only consensus conditions have been investigated in
those works without consideration of the convergence rate and
disturbance attenuation properties.

Accordingly, contributions of this work can be summarized as
follows: Based on the Lyapunov analysis, we show that it is pos-
sible to analytically find the worst performance bound for the
convergence rate and disturbance attenuation of the generalized
integrator network if the interconnection graph is undirected and
the non-integrator internal dynamics of each node is strictly pas-
sive. Further we show that one can enhance the performance
bound by increasing the second smallest eigenvalue of the Lapla-
cian matrix, which can be utilized for network design.
Notations: The following notations are used throughout the paper.
The set of real numbers is denoted by R. We denote [1 · · · 1]T ∈ Rn

by 1n. The n × n identity matrix is denoted by In. For two real vec-
tors x and ξ , (x, ξ) denotes the stacked column vector [xT ξ T

]
T .

For a real square matrix A, we denote the positive definiteness (re-
spectively, positive semi-definiteness) of A by A ≻ 0 (respectively,
A ≽ 0). For a real matrix A, AT denotes the transpose of A. For a
square matrix A, λmin(A) and λmax(A) denote the smallest and the
largest eigenvalues of the matrix, respectively. Further, λi(A) de-
notes the ith smallest eigenvalue.

An undirected weighted graph G is defined as a triple G :=

(V, E, W), where V denotes the set of nodes, E ⊆ {{i, j} : i, j ∈ V}

denotes the set of edges, andW : E → R̄+ denotes amap assigning
nonnegative real numbers to the edges. The nonnegative value
W({i, j}) assigned to {i, j} ∈ E is called the weight of the edge. We
assume that there are no self-loops, i.e., for any i ∈ V , {i, i} ∉ E . If
{i, j} ∈ E , j (respectively, i) is said to be a neighbor of i (respectively,
j). The set of neighbors of i ∈ V is defined as Ni := {j ∈ V : {i, j} ∈

E}. A path between two nodes is a sequence of edges by which it is
possible to move along the sequence of the edges from one of the
nodes to the other node. If there exists at least one path from any
node to any other nodes in G, the graph is said to be connected. Let
G = (V, E, W) be an undirected weighted graph with N nodes.
The Laplacian matrix L = [lij] ∈ RN×N of G is defined as

lij :=



j∈Ni

wij, i = j,

−wij, {i, j} ∈ E,
0, {i, j} ∉ E,

where wij := W({i, j}) for any {i, j} ∈ E .

2. Generalized single-integrator network

Consensus in a network of single-integrator nodes has been
actively studied in the literature (Jadbabaie, Lin, &Morse, 2003; Lin,
Francis, & Maggiore, 2007; Moreau, 2005; Olfati-Saber & Murray,
2004; Ren, Beard, & McLain, 2005). In those works, the following
network over a graph G has been considered:

ẋi = ui, ui =


j∈Ni

wij(xj − xi), i = 1, . . . ,N, (1)

where xi ∈ R is the output, ui ∈ R is the input, Ni is the set of
neighbors of node i, and wij is the weight for the corresponding
edge. We focus on networks with undirected interconnection
topology in this paper. We say that the single-integrator network
(1) asymptotically reaches consensus if xi(t)−xj(t) → 0 as t → ∞

for all i = 1, . . . ,N .
From the network (1), we construct the following generalized

integrator consensus network by considering additional non-
integrator internal dynamics contained in the individual nodes and
exogenous disturbances injected into the nodes:

ẋi = ζi + ωi, (2a)

ξ̇i = Aiξi + Biui, (2b)
ζi = Ciξi + Diui, (2c)

ui =


j∈Ni

wij(xj − xi), (2d)

where xi ∈ R, ξi ∈ Rni , ζi ∈ R, and ωi ∈ R for each i = 1, . . . ,N .
Note that the order of the non-integrator internal dynamics of node
i is not necessarily identical.

As discussed in Oh et al. (2015), the generalized integrator
network (2) captures characteristics of somephysical networks. An
example is the load frequency control (LFC) network of an electrical
power grid. In the LFC network, the output of each individual
system is the phase of its voltage, which is the integration of
the angular velocity. The interconnection is power exchanges
among the individual systems through transmission lines, which
are dependent on phase differences. Further individual systems
have non-integrator internal dynamics related to their governor,
turbine, generator, and local controller.

Consensus conditions for the network (2) has been studied in
Oh et al. (2015), which have showed that the network asymptoti-
cally reaches consensus under the disturbance free condition, i.e.,
ωi ≡ 0 for all i = 1, . . . ,N , if G is connected and the Gi(s) =

Ci(sIni − Ai)
−1Bi + Di is weakly strictly positive real (Brogliato,

Lozano, Maschke, & Egeland, 2007). However the convergence rate
for the network (2) has yet to be studied. Further the effect of ex-
ogenous disturbance needs to be studied because most of physical
systems are subject to some disturbance.

3. Main result

3.1. Convergence rate

To investigate convergence rate of the network (2), we
introduce the following assumption:

Assumption 3.1. For the network (2), assume the following:

• The graph G is undirected and connected.
• For i = 1, . . . ,N , there exist mi > 0, Pi ∈ Rni×ni , Pi = PT

i ≻ 0,
Ri ∈ Rni×1, andWi ∈ R such that

PiAi + AT
i Pi = −RiRT

i − miPi, (3a)

PiBi − CT
i = −RiWi, (3b)

Di + DT
i = W T

i Wi. (3c)

• For i = 1, . . . ,N , Di ≠ 0.

The second condition in Assumption 3.1 means that the non-
integrator internal dynamics consisting of (2b) and (2c) satisfies
the strict passivity condition (Khalil, 2002). It follows from the
Kalman–Yakubovich–Popov lemma that Gi(s) = Ci(sIni −Ai)Bi+Di
is strictly positive real. Thus, under Assumption 3.1, the network
(2) asymptotically reaches consensus (Oh et al., 2015).

Let x = [x1 · · · xN ]
T , ξ = [ξ T

1 · · · ξ T
N ]

T , ζ = [ζ1 · · · ζN ]
T , and ω =

[ω1 · · · ωN ]
T . Further let A = blkdiag(A1, . . . , AN), B = blkdiag
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