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We study the problem of inferring a sparse vector from random linear combinations of its components. 
We propose the Accelerated Orthogonal Least-Squares (AOLS) algorithm that improves performance of the 
well-known Orthogonal Least-Squares (OLS) algorithm while requiring significantly lower computational 
costs. While OLS greedily selects columns of the coefficient matrix that correspond to non-zero 
components of the sparse vector, AOLS employs a novel computationally efficient procedure that speeds 
up the search by anticipating future selections via choosing L columns in each step, where L is an 
adjustable hyper-parameter. We analyze the performance of AOLS and establish lower bounds on the 
probability of exact recovery for both noiseless and noisy random linear measurements. In the noiseless 
scenario, it is shown that when the coefficients are samples from a Gaussian distribution, AOLS with 
high probability recovers a k-sparse m-dimensional sparse vector using O(k log m

k+L−1 ) measurements. 
Similar result is established for the bounded-noise scenario where an additional condition on the smallest 
nonzero element of the unknown vector is required. The asymptotic sampling complexity of AOLS is 
lower than the asymptotic sampling complexity of the existing sparse reconstruction algorithms. In 
simulations, AOLS is compared to state-of-the-art sparse recovery techniques and shown to provide better 
performance in terms of accuracy, running time, or both. Finally, we consider an application of AOLS to 
clustering high-dimensional data lying on the union of low-dimensional subspaces and demonstrate its 
superiority over existing methods.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The task of estimating sparse signal from a few linear combi-
nations of its components is readily cast as the problem of finding 
a sparse solution to an underdetermined system of linear equa-
tions. Sparse recovery is encountered in many practical scenarios, 
including compressed sensing [1], subspace clustering [2,3], sparse 
channel estimation [4,5], compressive DNA microarrays [6], and 
a number of other applications in signal processing and machine 
learning [7–9]. Consider the linear measurement model

y = Ax + ν, (1)

where y ∈ R
n denotes the vector of observations, A ∈ R

n×m is the 
coefficient matrix (i.e., a collection of features) assumed to be full 
rank (generally, n < m), ν ∈ R

n is the additive measurement noise 
vector, and x ∈R

m is an unknown vector assumed to have at most 
k non-zero components (i.e., k is the sparsity level of x). Finding a 
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sparse approximation to x leads to a cardinality-constrained least-
squares problem

minimize
x

‖y − Ax‖2
2 subject to ‖x‖0 ≤ k, (2)

known to be NP-hard; here ‖ · ‖0 denotes the �0-norm, i.e., the 
number of non-zero components of its argument. The high cost of 
finding the exact solution to (2) motivated development of a num-
ber of heuristics that can generally be grouped in the following 
categories:

1) Convex relaxation schemes. These methods perform compu-
tationally efficient search for a sparse solution by replacing the 
non-convex �0-constrained optimization by a sparsity-promoting 
�1-norm optimization. It was shown in [10] that such a for-
mulation enables exact recovery of a sufficiently sparse signal 
from noise-free measurements under certain conditions on A and 
with O(k log m

k ) measurements. However, while the convexity of 
�1-norm enables algorithmically straightforward sparse vector re-
covery by means of, e.g., iterative shrinkage-thresholding [11] or 
alternating direction method of multipliers [12], the complexity of 
such methods is often prohibitive in settings where one deals with 
high-dimensional signals.
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2) Greedy schemes. These heuristics attempt to satisfy the cardi-
nality constraint directly by successively identifying k columns of 
the coefficient matrix which correspond to non-zero components 
of the unknown vector. Among the greedy methods for sparse vec-
tor reconstruction, the orthogonal matching pursuit (OMP) [13]
and Orthogonal Least-Squares (OLS) [14,15] have attracted particu-
lar attention in recent years. Intuitively appealing due to its simple 
geometric interpretation, OMP is characterized by high speed and 
competitive performance. In each iteration, OMP selects a column 
of the coefficient matrix A having the highest correlation with the 
so-called residual vector and adds it to the set of active columns; 
then by solving a least-square problem using the modified Gram–
Schmidt (MGS) algorithm, the projection of the observation vector 
y onto the space spanned by the columns in the active set is 
used to form a residual vector needed for the next iteration of 
the algorithm. When sparsity level k is unknown, the norm resid-
ual vector is computed and used as the stopping criteria of OMP. 
Numerous modifications of OMP with enhanced performance have 
been proposed in literature. For instance, instead of choosing a 
single column in each iteration of OMP, StOMP [16] selects and 
explores all columns having correlation with a residual vector that 
is greater than a pre-determined threshold. GOMP [17] employs 
the similar idea, but instead of thresholding, a fixed number of 
columns is selected per iteration. CoSaMP algorithm [18] identifies 
columns with largest proximity to the residual vector, uses them to 
find a least-squares approximation of the unknown signal, and re-
tains only significantly large entries in the resulting approximation. 
When the unknown signal is a random quantity, rakeness-Based 
OMP approach [19], attempts to design the measurement matrix 
by taking into account the second-order statistics of the signal to 
increase the expected energy of as subset of entries of y. Addition-
ally, necessary and sufficient conditions for exact reconstruction of 
sparse signals using OMP have been established. Examples of such 
results include analysis under Restricted Isometry Property (RIP) 
[20–22], and recovery conditions based on Mutual Incoherence 
Property (MIP) and Exact Recovery Condition (ERC) [23–25]. For 
the case of random measurements, performance of OMP was ana-
lyzed in [26,27]. Tropp et al. in [26] showed that in the noise-free 
scenario, O (k log m) measurements is adequate to recover k-sparse 
m-dimensional signals with high probability. In [28], this result 
was extended to the asymptotic setting of noisy measurements in 
high signal-to-noise ratio (SNR) under the assumption that the en-
tries of A are i.i.d. Gaussian and that the length of the unknown 
vector approaches infinity. Recently, the asymptotic sampling com-
plexity of OMP and GOMP is improved to O(k log m

k ) in [29] and 
[30], respectively.

Recently, performance of OLS was analyzed in the sparse signal 
recovery settings with deterministic coefficient matrices. In [31], 
OLS was analyzed in the noise-free scenario under Exact Recovery 
Condition (ERC), first introduced in[23]. Herzet et al. [32] provided 
coherence-based conditions for sparse recovery of signals via OLS 
when the nonzero components of x obey certain decay conditions. 
In [33], sufficient conditions for exact recovery are stated when a 
subset of true indices is available. In [34] an extension of OLS that 
employs the idea of [16,17] and identifies multiple indices in each 
iteration is proposed and its performance is analyzed under RIP. 
However, all the existing analysis and performance guarantees for 
OLS pertain to non-random measurements and cannot directly be 
applied to random coefficient matrices. For instance, the main re-
sults in the notable work [29] relies on the assumption of having 
dictionaries with �2-norm normalized columns while this obvi-
ously does not hold in the scenarios where the coefficient matrix is 
composed of entries that are drawn from a Gaussian distribution.

3) Branch-and-bound schemes. Recently, greedy search heuristics 
that rely on OMP and OLS to traverse a search tree along paths 
that represent promising candidates for the support of x have been 

proposed. For instance, [35,36] exploit the selection criterion of 
OMP to construct the search graph while [37,38] rely on OLS to 
efficiently traverses the search tree. Although these methods em-
pirically improve the performance of greedy algorithms, they are 
characterized by exponential computational complexity in at least 
one parameter and hence are prohibitive in applications dealing 
with high-dimensional signals.

1.1. Contributions

Motivated by the need for fast and accurate sparse recovery 
in large-scale setting, in this paper we propose a novel algorithm 
that efficiently exploits recursive relation between components of 
the optimal solution to the original �0-constrained least-squares 
problem (2). The proposed algorithm, referred to as Accelerated 
Orthogonal Least-Squares (AOLS), similar to GOMP [17] and MOLS 
[34] exploits the observation that columns having strong correla-
tion with the current residual are likely to have strong correlation 
with residuals in subsequent iterations; this justifies selection of 
multiple columns in each iteration and formulation of an overde-
termined system of linear equation having solution that is gener-
ally more accurate than the one found by OLS or OMP. However, 
compared to MOLS, our proposed algorithm is orders of magnitude 
faster and thus more suitable for high-dimensional data applica-
tions.

We theoretically analyze the performance of the proposed AOLS 
algorithm and, by doing so, establish conditions for the exact re-
covery of the sparse vector x from measurements y in (1) when 
the entries of the coefficient matrix A are drawn at random from 
a Gaussian distribution – the first such result under these as-
sumptions for an OLS-based algorithm. We first present condi-
tions which ensure that, in the noise-free scenario, AOLS with 
high probability recovers the support of x in k iterations (recall 
that k denotes the number of non-zero entries of x). Adopting the 
framework in [26], we further find a lower bound on the prob-
ability of performing exact sparse recovery in k iterations and 
demonstrate that with O

(
k log m

k+L−1

)
measurements AOLS suc-

ceeds with probability arbitrarily close to one. Moreover, we ex-
tend our analysis to the case of noisy measurements and show 
that similar guarantees hold if the nonzero element of x with 
the smallest magnitude satisfies certain condition. This condition 
implies that to ensure exact support recovery via AOLS in the 
presence of additive �2-bounded noise, SNR should scale linearly 
with sparsity level k. Our procedure for determining requirements 
that need to hold for AOLS to perform exact reconstruction follows 
the analysis of OMP in [26,28,27], although with two major differ-
ences. First, the variant of OMP analyzed in [26,28,27] implicitly 
assumes that the columns of A are �2-normalized which clearly 
does not hold if the entries of A are drawn from a Gaussian distri-
bution. Second, the analysis in [26] is for noiseless measurements 
while [28,27] essentially assume that SNR is infinite as k → ∞. To 
the contrary, our analysis makes neither of those two restrictive 
assumptions. Moreover, we show that if m is sufficiently greater 
than k, the proposed AOLS algorithm requires O

(
k log m

k+L−1

)
ran-

dom measurements to perform exact recovery in both noiseless 
and bounded noise scenarios; this is fewer than O (k log(m − k))

that was found in [28,27] to be the asymptotic sampling com-
plexity for OMP, and O

(
k log m

k

)
that was found for MOLS, GOMP, 

and BP in [34,30,39]. Additionally, our analysis framework is rec-
ognizably different from that of [29] for OLS. First, in [29] it is 
assumed that A has �2-normalized columns, and hence the anal-
ysis in [29] does not apply to the case of Gaussian matrices, the 
scenario addressed in this paper for our proposed algorithm. Fur-
ther, the main result of [29] (see Theorem 3 in [29]) states that 
OLS exactly recovers a k-sparse vector in at most 6k iterations if 
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