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a b s t r a c t

This paper addresses the leader–follower flocking problemwith a moving leader for networked Lagrange
systems with parametric uncertainties under a proximity graph. Here a group of followers move
cohesively with the moving leader to maintain connectivity and avoid collisions for all time and also
eventually achieve velocity matching. In the proximity graph, the neighbor relationship is defined
according to the relative distance between each pair of agents. Each follower is able to obtain information
from only the neighbors in its proximity, involving only local interaction. We consider two cases: (i) the
leader moves with a constant velocity, and (ii) the leader moves with a varying velocity. In the first case,
a distributed continuous adaptive control algorithm accounting for unknown parameters is proposed in
combination with a distributed continuous estimator for each follower. In the second case, a distributed
discontinuous adaptive control algorithm and estimator are proposed. Then the algorithm is extended to
be fully distributed with the introduction of gain adaptation laws. In all proposed algorithms, only one-
hop neighbors’ information (e.g., the relative position and velocity measurements between the neighbors
and the absolute position and velocity measurements) is required, and flocking is achieved as long as the
connectivity and collision avoidance are ensured at the initial time and the control gains are designed
properly. Numerical simulations are presented to illustrate the theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A multi-agent system is defined as a collection of autonomous
agents which are able to interact with each other or with their
environments to solve problems that are difficult or impossible
for an individual agent. In a multi-agent system, the agents often
act in a distributed manner to complete global tasks cooperatively
with only local information from their neighbors so as to increase
flexibility and robustness.

The collective behavior can be observed in nature like flock of
birds, swarm of insects, and school of fish. In Reynolds (1987),

✩ Thematerial in this paperwas partially presented at the 2014 American Control
Conference, June 4–6, 2014, Portland, OR, USA. This paper was recommended for
publication in revised form by Associate Editor Shuzhi Sam Ge under the direction
of Editor Miroslav Krstic.

E-mail addresses: sghap001@ucr.edu (S. Ghapani), meij.hit@gmail.com (J. Mei),
ren@ee.ucr.edu (W. Ren), ydsong@cqu.edu.cn (Y. Song).
1 Tel.: +86 23 65102056; fax: +86 23 65102056.

three heuristic rules are characterized for the flocking of multi-
agent systems, namely, flock centering, collision avoidance and
velocity matching. In Tanner, Jadbabaie, and Pappas (2007), a
flocking algorithm is introduced for a group of agents when there
is no leader. A theoretical framework is proposed in Olfati-Saber
(2006) to address the flocking problem with a leader, which has
a constant velocity and is a neighbor of all followers. Ref. Su,
Wang, and Lin (2009) considers both cases where the leader has
a constant and a varying velocity. When the leader has a constant
velocity, Su et al. (2009) relaxes the constraint that the leader
is a neighbor of all followers. However, in the case where the
leader has a varying velocity, it still requires that the leader be
a neighbor of all followers. Unfortunately, this is an unrealistic
restriction on the distributed control design, especially when the
number of the followers becomes large. In Cao and Ren (2012),
distributed control algorithms for swarm tracking are studied via a
variable structure approach,where themoving leader is a neighbor
of only a subset of the followers. In Li et al. (2013), the flocking
control and communication optimization problems are considered
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for multi-agent systems in a realistic communication environment
and the desired separation distances between neighboring agents
are calculated in real time.

Note that all above references focus on linear multi-agent
systems with single- or double-integrator dynamics. However,
in reality, many physical systems are inherently nonlinear and
cannot be described by linear equations. Among the nonlinear
systems, Lagrange models can be used to describe a large class
of physical systems of practical interests such as autonomous
vehicles, walking robots, and rotation and translation of spacecraft
formation flying. But due to the existence of nonlinear terms with
parametric uncertainties, the algorithms for linear models cannot
be directly used to solve the coordination problem for multi-agent
systems with Lagrange dynamics.

Recent results on distributed coordination of networked
Lagrange systems focus on the consensus without a leader (Chopra
& Spong, 2006; Hou, Cheng, & Tan, 2009; Min, Sun, Wang, & Li,
2011; Ren, 2009; Wang, 2013, 2014), coordinated tracking with
one leader (Chung & Slotine, 2009; Dong, 2011; Mei, Ren, & Ma,
2011), containment control with multiple leaders (Mei, Ren, Chen,
& Ma, 2013; Mei, Ren, & Ma, 2012; Meng, Ren, & You, 2010), and
flocking or swarming without or with a leader (Cheah, Hou, &
Slotine, 2009; Chopra, Stipanovic, & Spong, 2008; Meng, Lin, &
Ren, 2012). Ref. Chopra et al. (2008) proposes a control algorithm
based on potential functions for networked Lagrange systems to
achieve collision avoidance and velocity matching simultaneously
in both time-delay and switching-topology scenarios. However,
parametric uncertainties are not considered and there is no
leader. Ref. Cheah et al. (2009) presents a region-based shape
controller for a swarm of Lagrange systems. By utilizing potential
functions, the authors design a control scheme that can force
multiple robots to move as a group inside a desired region
with a common velocity while maintaining a minimum distance
among themselves. However, the algorithm relies on the strict
assumption that all followers have access to the information of
the desired region and the common velocity. A leader–follower
swarm tracking framework is established in Meng et al. (2012) in
the presence of multiple leaders. However, only a compromised
result can be obtained when the group dispersion, cohesion, and
containment objectives are considered together. In the proposed
algorithms, the variables of the estimators must be communicated
among the followers. Furthermore,more information is used in the
controller design, for example, the second-order derivatives of the
potential functions.

In this paper we focus on the distributed leader–follower flock-
ing problemwith amoving leader for networked Lagrange systems
with unknown parameters under a proximity graph defined ac-
cording to the relative distance between each pair of agents, ex-
panding on our preliminary results presented in Ghapani, Mei, and
Ren (2014). Here a group of followers move cohesively with the
moving leader to maintain connectivity and avoid collisions for all
time and also eventually achieve velocity matching. The leader can
be a physical or virtual vehicle, which encapsulates the group tra-
jectory. We consider two cases: (i) the leader moves with a con-
stant velocity, and (ii) the leader moves with a varying velocity.
In the first case, a distributed continuous adaptive control algo-
rithm accounting for unknown parameters and a distributed con-
tinuous estimator are proposed for each follower. In the second
case, we first propose a distributed discontinuous adaptive con-
trol algorithm and estimator, wherewe use a common control gain
that is sufficiently large for all followers. Hence the system is not
completely distributed. We then improve the algorithm by further
proposing gain adaption schemes to implement a fully distributed
algorithm. In all proposed algorithms, only one-hop neighbors’ in-
formation is used, and flocking is achieved as long as the connec-
tivity and collision avoidance are ensured at the initial time and the
control gains are designed properly. Compared with the results in
the existing literature, this paper has the following novel features.

(1) This paper considers each agent as a nonlinear Euler–Lagrange
system with parametric uncertainties and is more realistic.
While in Cao and Ren (2012), Li et al. (2013), Olfati-Saber
(2006) and Tanner et al. (2007), the agents’ dynamics are
assumed to be single or double integrators. The results for
single- or double-integrator dynamics are not applicable to
Lagrange systems with parametric uncertainties.

(2) This paper considers the combination of flocking (considering
connectivity maintenance, collision avoidance, and velocity
matching with a moving leader in the meantime) and the
constraint that the leader’s information is available to only
the followers in its proximity. The above constraint introduces
further complexities since not all followers know the leader’s
velocity. Even for the case with single- or double-integrator
agents, the problem is very challenging (Cao & Ren, 2012),
not to mention the case of nonlinear Lagrange systems with
parametric uncertainties. In contrast, in Chopra et al. (2008),
parametric uncertainties are not considered and there is no
leader and in Cheah et al. (2009), it is assumed that the
leader’s information is available to all followers (against the
local interaction nature of the problem).

(3) To overcome the coexistence and coupling of the above men-
tioned challenges, in the current paper,wepropose an adaptive
control law in combination with a new distributed estimator
for each follower. The novelty of the estimators is that the par-
tial derivatives of the potential functions are integrated into
the estimators. In Cao and Ren (2012) and Meng et al. (2012),
the variables of the estimators must be communicated be-
tween the neighbors. For the case of amoving leaderwith vary-
ing velocity, the proposed algorithms in Cao and Ren (2012)
andMei et al. (2011) require both one-hop and two-hop neigh-
bors’ information. In contrast, in our proposed algorithms, only
one-hop neighbors’ information (e.g., the relative position and
velocity measurements between the neighbors and the abso-
lute position and velocity measurements) is required. These
measurements can be obtained by the sensing devices carried
by the agents and hence the need for communication can be
removed. Further, a fully distributed algorithm without global
information is proposed in the current paper, while the results
in Cao and Ren (2012), Mei et al. (2011) and Meng et al. (2012)
rely on some global information.

Notations: Let 1n denote the n × 1 column vector of all ones. Let
λmin(.) denote the minimum eigenvalue of a square real matrix
with real eigenvalues. Let diag(z1, . . . , zp) be the diagonal matrix
with diagonal entries z1 to zp. For symmetric square real matrices
A and Bwith the same order, A > B or equivalently B < A (respec-
tively, A ≥ B or equivalently B ≤ A) means that A− B is symmetric
positive definite (respectively, semi-definite). Throughout the pa-
per, we use ∥·∥ to denote the Euclidean norm,⊗ to denote the Kro-
necker product, and sgn(·) to denote the signum function defined
component-wise. For a vector function f (t) : R → Rm, it is said
that f (t) ∈ Ll if (


∞

0 ∥f (τ )∥ldτ)
1
l < ∞ and f (t) ∈ L∞ if for each

element of f (t), noted as fi(t), supt≥0 |fi(t)| < ∞, i = 1, . . . ,m.

2. Background

2.1. Lagrange dynamics

Suppose that there existn+1 agents (e.g., autonomous vehicles)
consisting of one leader and n followers. The leader is labeled as
agent 0 and the followers are labeled as agent 1 ton. Then followers
are described by Lagrange equations of the form (Kelly, Davila, &
Perez, 2006)

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = ui, i = 1, . . . , n, (1)
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