
Automatica 67 (2016) 127–131

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Decentralized H-infinity control of complex systems with delayed
feedback✩

Lubomír Bakule, Branislav Rehák, Martin Papík
Institute of Information Theory and Automation, Czech Academy of Sciences, 182 08 Prague 8, Czech Republic

a r t i c l e i n f o

Article history:
Received 29 December 2014
Received in revised form
24 July 2015
Accepted 11 December 2015
Available online 4 February 2016

Keywords:
Decentralized control
H-infinity control
Large-scale systems
Fault-tolerant systems

a b s t r a c t

The paper studies the problem of decentralized H∞ fault tolerant state feedback control design for a class
of continuous-time complex systems composed of identical subsystems and symmetric interconnections.
We consider a time-varying interval-boundeddelay in the feedback of each channel. Single delay aswell as
multiple delay cases is considered. By exploiting a particular structure of the systems, sufficient conditions
are derived for the gain matrix selection. The controller design is performed using a reduced-order
system under linear matrix inequality approach constraints. The asymptotic stability with disturbance
attenuation γ of the overall multiple delay closed-loop system is guaranteed when synthesizing the gain
matrix into the decentralized controller. Moreover, sufficient conditions for the H∞ bound tolerance
under local control channel failures of the overall closed-loop system are derived. The tolerance can
be easily tested on several low-order systems. A numerical example illustrates the effectiveness of the
proposed method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The paper is focused on a class of continuous-time dynamic
systems composed of the interconnection of identical subsystems
with identical couplings. Such systems are knownas symmetrically
interconnected systems. They appear in very different real world
systems as presented for instance in Bakule (2005), Bakule (2007)
and Bakule and Rodellar (1996). This paper shows that such a
structure of subsystems and interconnections enables a special
analysis and control design procedure. The main feature of this
method is the setup of systems with reduced dimension, but
keeping the same dynamic properties. A more comprehensive
survey of theoretical and applied results can be found for instance
in Bakule (2014) with the references therein.

1.1. Prior work

The paper is mainly inspired by the previous works on
symmetric composite systems with delayed feedback presented
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in Bakule, de a Sen, Papík, and Rehák (2013a) and Bakule, de la
Sen, Papík, and Rehák (2013b), as well as the results on H∞ fault
tolerance for this class of systems in Huang, Lam, Yang, and Zhang
(1999) and LamandHuang (2007) or the LQ reliable control studied
byHuang, Lam, and Yang (2001). It iswell known that the synthesis
can be simplified through an appropriate transformation to a set of
systems of reduced dimensions.

The first contribution of the paper is a procedure for the gain
selection of the decentralized H∞ delayed feedback which guaran-
tees the asymptotic stabilitywith the disturbance attenuation level
γ of the overall multiple delay closed-loop system. A convex opti-
mization approach is used for the state feedback matrix gain se-
lection by Peng and Tian (2007) originally extended by the authors
into the robust control setting by using Cao, Sun, and Lam (1998).
It is shown how to synthesize this gain matrix into the overall sys-
tem.

The second contribution is sufficient conditions for the
asymptotic stability with the disturbance attenuation level γ of
the overall multiple delay closed-loop systems if several local
feedback controllers fail. The problem is to find an integer which
corresponds with the smallest number of failures that make the
global closed-loop system unstable or will cause the violation
of the disturbance attenuation level γ . Thus, the decomposition
approach results in simpler reduced-order test systems.

To the authors’ best knowledge, the problem of decentralized
H∞ controller design with multiple delay feedback as well as the
problem of fault tolerance for this class of symmetric composite
systems has not yet been solved.

http://dx.doi.org/10.1016/j.automatica.2016.01.013
0005-1098/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2016.01.013
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2016.01.013&domain=pdf
mailto:bakule@utia.cas.cz
mailto:rehakb@utia.cas.cz
mailto:papik@utia.cas.cz
http://dx.doi.org/10.1016/j.automatica.2016.01.013


128 L. Bakule et al. / Automatica 67 (2016) 127–131

1.2. Outline of the paper

Section 2 contains the state space description of the system
in an overall form as well as the structure of feedback which
is summarized in the problem statement. In Section 3, a single
delay controller design as well as its extension to a multiple delay
controller design is presented including computation algorithms.
This section contains the fault-tolerant analysis resulting in simply
verifiable test conditions based on certain systems of reduced
dimensions. In Section 4, a numerical example illustrates the
potential of the presented methodology.

2. Problem statement

2.1. System description

Structured system consists of N interconnected subsystems,
where the ith subsystem has the form

ẋi(t) = Axi(t) + Bui(t) + Gwi(t) +

N
i≠j, j=1

Hxj(t),

zi(t) = Cxi(t), i = 1, . . . ,N, N > 2,

(1)

where xi(t) ∈ Rn is the subsystem state, ui(t) ∈ Rm is the control
input,wi(t ∈ Rp) is the exogenous disturbance signal belonging to
L2[0, ∞), and zi(t) ∈ Rq is the penalty. A, B,G,H, C are constant
matrices of appropriate dimensions.

Overall system description of the system (1) is

Sg : ẋ(t) = Agx(t) + Bgu(t) + Ggw(t),
z(t) = Cgx(t), (2)

where x = (xT1, . . . , x
T
N)T , u = (uT

1, . . . , u
T
N)T , w = (wT

1 , . . . , w
T
N)T ,

and z = (zT1 , . . . , zTN)T are the states, inputs, disturbances,
and penalties, respectively. The matrices are defined as Ag

=

(Ag
ij), A

g
ii = A, Ag

ij = H for i ≠ j, Bg
= diag(B, . . . , B), Gg

=

diag(G, . . . ,G), and Cg
= diag(C, . . . , C).

2.2. Delayed feedback

Decentralized H∞ state control supposes that the states in the
feedback are delayed. Arbitrary time-varying delays acting within
a given bounded interval are considered in local loops. Suppose the
controller for the structured system (1) as

ui(t) = Kxi(t − τi(t)) (3)

with the bounds

0 ≤ τi(t) ≤ τ , i = 1, . . . ,N, (4)

where τ is a given positive constant. The control (3) can be
equivalently written for the overall system (2) as

u(t) =

N
i=1

DiK gEixi(t − τi(t)), (5)

where K g
= diag(K , . . . , K),Di = diag(0, . . . , 0, I, 0, . . . , 0),

and Ei = diag(0, . . . , 0, I, 0, . . . , 0). The matrices Di and Ei are
partitioned into N blocks of identical dimensions, where I denotes
the n × n and m × m identity matrices located at the ith position
of the matrices Di and Ei, respectively.

Fault tolerance H∞ analysis means to guarantee the asymptotic
stability with disturbance attenuation γ of the overall closed-
loop system (2), (5) under l local feedback channels failures.
By exploiting the particular structure of symmetric systems, the
stability test guaranteeing the disturbance attenuation level γ can
be performed easily. It leads to a certain reduced-order control

design system. Consider the overall closed-loop system as

Sc : ẋc(t) = Agxc(t) +

N
i=1

BgDiK gEixc(t − τi(t)) + Ggw(t),

z(t) = Cgx(t), xc(to) = Φc(to), to ∈ [−τ , 0],
(6)

where Φc(to) denotes the function of initial conditions. Suppose
that l channels of the system (6) totally fail, where l ∈ {1, . . . ,N}

during a certain time interval. The dynamics of actuator failures
can be modeled, without any loss of generality, by a generic model
as follows

S f : ẋf (t) = Agxf (t) +

N
i=l+1

BgDiK gEixf (t − τi(t)) + Ggw(t),

z f (t) = Cgxf (t), xf (to) = Φ f (to), to ∈ [−τ , 0]

(7)

with the first l failed channels. To simplify the notation, the indices
of xg for l failed loops are dropped in (7).

2.3. The problem

Given the symmetric complex system (2) and the controller (5).
The two goals are formulated as follows:
• Decentralized H∞ state control design
• Fault tolerance H∞ analysis
The first goal means to derive the method for the gain matrix
K selection so that the H∞ controller (5) globally asymptotically
stabilizes the closed-loop system (6) for a certain valid domain for
the delays. The second goal means to derive the conditions for the
H∞ fault tolerance of the closed-loop system (7), when a subset l
of local controller fails.

3. Main results

The solution attempts to employ the structure of a class of
symmetrical systems for the stabilizing decentralized controller as
well as effectively computed fault tolerance bounds of the overall
closed-loop system. First, the gain matrix selection for the design
model of reduced dimension with a single delay is introduced.
Then, it is shown how to use this result for a multiple delay
decentralized controller. Finally, a simple test for a fault tolerance
of the closed-loop system is derived.

3.1. Decentralized H∞ state feedback control

The design of controller (5) is decomposed into three subse-
quent steps. Step 1 presents a reduced-order construction of the
design system. Step 2 is a proper selection of the gain matrix K .
Step 3 concludes the procedure by the implementation of the gain
matrix into the overall system (2).

Step 1. The construction of the reduced-order design system
is available in detail in Bakule et al. (2013a,b). This is enabled
through appropriate transformation of states. Define the matrices
As = A − H and Ao = A − (N − 1)H . The resulting n-dimensional
design system has the form

Sm : ẋm(t) = (Am + 1Am(t))xm(t) + Bum(t) + Gwm(t),
zm(t) = Cxm(t), (8)

where Am = A + (N
2 − 1)H =

1
2 (Ao + As). The uncertainty has

the form 1Am(t) = e(t)N
2 H = e(t) 1

2 (Ao − As) = Ue(t)V for all
e(t) ∈ [−1, 1]. U and V are arbitrarily factorized matrices.

Step 2. Consider a single delay controller for the system (9)
um(t) = Kxm(t − τm(t)), (9)
where 0 ≤ τm(t) ≤ τ . The robust version of Theorem 1 by Peng
and Tian (2007) follows. It is required for the selection of the gain
K with an H∞ norm bound γ due to the uncertainty term 1Am(t)
in the system (8).



Download English Version:

https://daneshyari.com/en/article/695166

Download Persian Version:

https://daneshyari.com/article/695166

Daneshyari.com

https://daneshyari.com/en/article/695166
https://daneshyari.com/article/695166
https://daneshyari.com

