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The segmentation of images with severe noise has always been a very challenging task because noise has 
great influence on the accuracy of segmentation. This paper proposes a robust variational level set model 
for image segmentation, involving the kernel metric based on the Gaussian radial basis function (GRBF) 
kernel as the data fidelity metric. The kernel metric can adaptively emphasize the contribution of pixels 
close to the mean intensity value inside (or outside) the evolving curve and so reduce the influence of 
noise. We prove that the proposed energy functional is strictly convex and has a unique global minimizer 
in B V (�). A three-step time-splitting scheme, in which the evolution equation is decomposed into two 
linear differential equations and a nonlinear differential equation, is developed to numerically solve the 
proposed model efficiently. Experimental results show that the proposed method is very robust to some 
types of noise (namely, salt & pepper noise, Gaussian noise and mixed noise) and has better performance 
than six state-of-the-art related models.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Image segmentation is a key initial step which facilitates the 
subsequent tasks such as image analysis and pattern recognition. 
For a given image, the goal of segmentation is to partition the im-
age domain into two or more dissimilar regions, each representing 
an object. However, most of natural images could be degraded by 
noise during acquisition and transmission. Noise has great influ-
ence on the accuracy of segmentation, thus segmentation for noisy 
images has always been a very challenging task.

To perform the image segmentation task, many successful 
methods including variational level set models have been pre-
sented in the literature (e.g., [1–15]). Variational level set models 
perform the segmentation task by minimizing an energy functional 
defined over a space of level set functions. The energy functional 
typically consists of data term (external energy) that drives the 
evolving curve toward the desired locations and regularization 
term (internal energy) that smoothens the level set function.

The data term (in region-based models) is usually defined via 
certain data fidelity metric (e.g., L2-norm metric, a common data 
fidelity metric), depending on the statistical features of images; for 
example, from the viewpoint of statistical modeling, the L2-norm 
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metric can be considered to draw from the Bayesian maximum a 
posteriori (MAP) estimation of the Gaussian distribution that the 
noise occurring in the image follows [5,6]. For noisy image seg-
mentation, the proper selection of data fidelity metric depends 
on the type of noise. In most cases, it is (often implicitly) as-
sumed that the image is degraded by additive Gaussian noise; 
therefore, the L2-norm metric has been widely used for the data 
term in variational level set models (e.g., [1,7–11]) since Chan and 
Vese [1] primarily presented the quite widely used the “active 
contour without edges” model. Because the L2-norm metric has 
difficulty in handling intensity inhomogeneity, the local weighted 
L2-norm metric is adopted in some variational level set models 
(e.g., [13–15]). By utilizing the local weighted L2-norm metric in-
stead of the L2-norm metric, the models in [13–15] can efficiently 
segment images with intensity inhomogeneity. For images with 
salt & pepper noise, Jung et al. [16] utilized the L1-norm metric as 
the metric of data fidelity. For images with Poisson noise, Lee and 
Le [17] replaced the L2-norm metric in the Chan–Vese model [1]
by 

∫
�
(u − f log(u))dx, where u is the piecewise constant function 

related to level set function. The data fidelity metrics mentioned 
above can handle specific noise, but they may be only appropriate 
for one type of noise. Recently, the kernel metric has been studied 
in the literature (e.g., [18–20]). Inspired by the kernel metric, Wu 
et al. [21] adopted the kernel metric based on the Gaussian radial 
basis function (GRBF) kernel to define the data term. This kernel 
metric can adaptively emphasize the contribution of pixels close 
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to the mean intensity value inside (or outside) the evolving curve 
and so reduce the influence of noise. Moreover, this kernel met-
ric is a quite flexible alternative to several metrics (e.g., L2-norm 
metric, L1-norm metric), and can be appropriate for some different 
types of noise.

The regularization term is usually utilized to restrain the oscil-
lation of level set function and smoothen the evolving curve. In [1], 
Chan and Vese employed the length of curve as the regularization 
term. In [7], Chan et al. introduced the TV functional as the regu-
larization term to obtain the global convex model (GCV). Based on 
the GCV model, Bresson et al. [8] defined the regularization term 
by integrating an edge indicator function into the TV functional. 
In [22], Zhang et al. presented an extraordinary reaction–diffusion 
scheme, in which the diffusion term is originated from the H1

regularization. Wu and He [9] employed the H1 regularization 
to regularize the auxiliary function instead of level set function. 
Zhang et al. [23,24] directly used the Gaussian filter to act on the 
level set function at each iteration to play the role of regularization 
term.

In the paper, we propose a variational level set model with 
kernel metric for image segmentation, in which the data term is 
defined by the kernel metric based on the GRBF kernel and the 
regularization term is defined by the TV functional. We prove that 
the proposed model is strictly convex and has a unique minimizer 
in B V (�). Due to the properties that the Ginzburg–Landau (GL) 
functional �-converges to the TV functional [25,26] and can be 
efficiently solved by the MBO scheme [27], we replace the TV 
functional with the GL functional in the numerical implementation 
and design a three-step time-splitting scheme, in which the evolu-
tion equation is decomposed into a linear differential equation, a 
linear diffusion equation and a nonlinear differential equation, re-
spectively. Experimental results show that the proposed method is 
very robust to some types of noise (i.e. salt & pepper noise, Gaus-
sian noise and mixed noise) and has better performance compared 
to some related models.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review some related models. In Section 3, we describe 
the proposed model and present some theoretic results. In Sec-
tion 4, we give the numerical implementation. The experimental 
results are presented in Section 5 and the conclusions are given in 
Section 6.

2. Related works

2.1. Chan–Vese model

The Mumford–Shah model [28] is a general mathematical 
model that can achieve image segmentation goal. The basic idea 
is to seek a pair (u, �) for a given image I : � ⊂ R2 → R , such 
that u : � → R is a piecewise smooth approximation of the image 
I and the curve � is a set of edges between non-overlapping sub-
regions within the image I . In detail, the Mumford–Shah model is 
the minimization problem of the following energy functional:

E(u,�) = λ

∫
�

(I − u)2dx +
∫

�\�
|∇u|2dx + μ · Length(�), (1)

where λ > 0 and μ > 0 are fixed scale parameters, ∇ is the gradi-
ent operator and Length(�) is the length of the curve �.

Since the minimization problem of the Mumford–Shah func-
tional (1) is formidable, it is a useful simplification of (1) to ap-
proximate the intensities inside each of the non-overlapping sub-
regions by a constant. For the two-phase piecewise constant case, 
where ∇u = 0 in each subregion, the Mumford–Shah functional (1)
is simplified to

E(c1, c2,�) = λ

∫
inside(�)

(I − c1)
2dx + λ

∫
outside(�)

(I − c2)
2dx

+ μ · Length(�), (2)

where c1 and c2 are constants depending on �.
In the level set method proposed by Osher and Sethian [29], 

the unknown curve � can be represented by the zero level set of 
a Lipschitz function φ(x) with the following properties:⎧⎪⎨
⎪⎩

� = {x ∈ � : φ(x) = 0},
inside(�) = {x ∈ � : φ(x) > 0},
outside(�) = {x ∈ � : φ(x) < 0}.

(3)

The function φ(x) with the above properties is called level set 
function.

Based on (2) and (3), Chan and Vese [1] proposed the following 
energy functional in the level set formulation:

E(c1, c2, φ) = λ1

∫
�

(I − c1)
2 H(φ)dx

+ λ2

∫
�

(I − c2)
2(1 − H(φ))dx

+ μ

∫
�

δ(φ)|∇φ|dx,

(4)

where λ1 > 0, λ2 > 0 and μ ≥ 0 are fixed scale parameters, H(·)
and δ(·) denote the one-dimensional Heaviside function and Dirac 
function, respectively. In practice, they used the slightly regularized 
versions Hε(·) and δε(·) instead of H(·) and δ(·) in the energy 
functional (4).

Chan and Vese [1] employed the alternating minimization 
scheme to solve the minimization problem of the energy func-
tional (4) with respect to both (c1, c2) and φ, in which the steepest 
descent method is used for the solution of the minimization prob-
lem of the energy functional (4) with respect to φ and an implicit 
finite difference scheme is designed to solve numerically the solu-
tion of the associated Euler–Lagrange equation. When the solution 
of the difference equation (denoted by φn) comes to a steady state, 
the zero level set of φn could become the contours that separate 
the objects from the background.

Due to adopt the region information of image, the Chan–Vese 
model behaves well in detecting objects with weak or discontinu-
ous edges. However, the non-convexity of the energy functional (4)
with respect to φ could make it trap in local minima; this could 
lead to poor segmentation if the initial contours are not chosen 
properly. In addition, the adoption of L2-norm for the definition 
of data term makes the Chan–Vese model is not robust to severe 
noise.

2.2. Fuzzy active contour model with kernel metric

Krinidis and Chatzis [30] proposed the fuzzy energy-based ac-
tive contour model, combining fuzzy membership function and 
the Mumford–Shah functional (2). Different from the Chan–Vese 
model, this model implicitly represents the evolving curve � by 
the 0.5-level set of a fuzzy membership function u with the fol-
lowing properties:⎧⎪⎨
⎪⎩

� = {x ∈ � : u(x) = 0.5},
inside(�) = {x ∈ � : u(x) > 0.5},
outside(�) = {x ∈ � : u(x) < 0.5}.

(5)
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