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a b s t r a c t

An optimal estimation method for state and distributed parameters in 1-D hyperbolic system based on
adjoint method is proposed in this paper. A general form of the partial differential equations governing
the dynamics of system is first introduced. In this equation, the initial condition or state variable as well
as some empirical parameters are supposed to be unknown and need to be estimated. The Lagrangian
multipliermethod is used to connect the dynamics of the system and the cost function defined as the least
square error between the simulation values and themeasurements. The adjoint statemethod is applied to
the objective functional in order to get the adjoint system and the gradients with respect to parameters
and initial state. The objective functional is minimized by Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method. Due to the non-linearity of both direct and adjoint system, the nonlinear explicit Lax–Wendroff
scheme is used to solve themnumerically. The presented optimal estimation approach is validated by two
illustrative examples, the first one about state and parameter estimation in a traffic flow, and the second
one in an overland flow system.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In nature and ordinary life, one can find a lot of physical laws
described by hyperbolic partial differential equations of order
one such as water flow, traffic flow, gas dynamics or electrical
lines for instance. Researchers in control have investigated a large
number of problems concerning this type of systemswith different
purposes for example to design an infinite-dimensional nonlinear
predictive control for open-channel flow (Georges, 2009); tomodel
and control a dam-river system (Litrico & Georges, 1999a,b); to
investigate the receding horizon boundary control applied on
Lighthill–Whitham–Richards traffic flow model to avoid shock
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waves (Pham, Georges, & Besançon, 2012); to optimally control
traffic in highway network using linear programming (Li, Canepa,
& Claudel, 2014); to apply the predictive control method on gas jet
flames distribution (Sun &Wang, 2005).

One of the important problems arising in the simulation and
control of hyperbolic systems is that uncertainty of the initial
condition and empirical parameters can cause large errors and
inconsistency between the output of control system and the real
one. This motivated few studies on observer design, and even
output feedback control, going back to works of Christofides
and Daoutidis (1996, 1998) for instance, with pole placement
and Kalman designs, up to Hasan (2014) more recently, with
backstepping approaches (as also in Vazquez, Krstic, and Coron
(2011)). In the present paper, the purpose is to develop a
method based on optimal control theory to optimally estimate
the initial condition and distributed parameters in such 1-D
hyperbolic systems. Some authors studied constant parameter
estimation in hyperbolic system such as Becker et al. who used
themethod of influence coefficient to estimateManning roughness
coefficient in an unsteady open-channel flow (Becker & Yeh,
1972); H. Longxi investigated a complex method to estimate the
values of all roughness of a channel network (Longxi, 2008);
Y. Ding et al. proposed an adjoint analysis method to find
out roughness coefficient in shallow water (Ding, Jia, & Wang,
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2004). In the case of distributed parameters, Y. Ding et al. also
considered the same approach and applied it on the multi-
reaches channel flow network (Ding & Wang, 2005); Richard
et al. considered a numerical scheme used to solve parameter
identification issue for 1-D hyperbolic system (Ewing & Lin, 1988);
whereas Wenhuan investigated a quasi-Newton method to deal
with the same problem (Yu, 1999). In a former paper of Bagchi
and ten Brummelhuis (1990), the parameter and system state of
a discrete-time hyperbolic system with noisy boundary condition
are estimated simultaneously based on the maximization of a
likelihood function.More recently, we proposed an adjointmethod
to estimate the initial conditions in an overland flow described
by a one dimensional Saint-Venant equation (Nguyen, Georges, &
Besancon, 2014). Notice that contemporaneously with it, Hasan
et al. investigated a moving horizon technique to estimate state
and constant parameter in a 2 × 2 linear hyperbolic system based
on a distributed model for drilling application (Hasan & Imsland,
2014). In that study, themodelwas discretized first and the adjoint
method was applied to the resulting finite dimensional system. In
the present paper, which can be considered as an extended version
of Nguyen et al. (2014) to general hyperbolic systems, the adjoint
method is formulated and solved directly on nonlinear infinite
dimensional models. More precisely, we deal with a parameter
and state estimation approach in a one-dimensional nonlinear
hyperbolic system, with a variable denoted by u(x, t), and a flow
denoted by f (u(x, t), x), respectively depending on some initial
condition denoted by ui

0(x), and some distributed parameters
denoted by αi(x), both supposed to be unknown, and thus needing
to be estimated. The adjoint analysis is formulated with the
original infinite dimensional system, to connect the sensitivity of
variables needing to be estimated with the system model and the
measurements. These points are also themain contributions of the
present paper, and to the best of our knowledge, there are very few
researches realized with such a spirit.

The rest of this paper is organized as follows: Section 2describes
the dynamics of system and the formulation of optimal estimation
problem. The adjoint method is applied to the optimization
problem to get the adjoint system and gradient of estimated
variables is presented in Section 3. In Section 4, two illustrative
examples dealing with parameter and state estimation in traffic
flow and overland flow system are presented. Some conclusions
and perspectives are given at the end of the paper.

2. Estimation problem statement

2.1. System dynamics

Let us consider a general form of 1-D hyperbolic system of
variable u(x, t) and flow f (u(x, t), x) a function of u(x, t) and x.
The spatial variable x and time variable t belong to the set (x, t) ∈

[0, L] × R+, and the system reads:
∂u(x, t)

∂t
+

∂ f (u(x, t), x)
∂x

= g(x, t)

u(x, 0) = ui
0(x)

u(0, t) = ub
0(t)

(1)

where the function ub
0(t) is a predefined boundary condition, the

function ui
0(x) denotes the initial condition, and g(x, t) is a known

function. Notice that if it is clear enough in the sequel, notation f
and u will be used instead of f (u(x, t), x) and u(x, t) in order to
shorten the equation length. Let us assume, without any loss of
generality, that the function f (u, x) can be written in the following
form for some vectors α = [α1(x) . . . αi(x) . . . αK (x)]T and ϕ =

[ϕi(u) . . . ϕi(u) . . . ϕK (u)]T .

f =

K
i=1

αi(x)ϕi(u). (2)

On this basis, let us consider the problem of estimating time and
space evolution of u when initial condition ui

0(x) is unknown,
together with function parameter α(x). Once the initial state and
parameter of system are successfully recovered, all transient state
profiles of the system can be fully rebuilt by simulation.

2.2. Optimal estimation problem

For the estimation problem of parameter and state in the
considered hyperbolic system, one can use two main approaches:
empirical procedures or minimization approach based on optimal
control theory. The first approach uses direct empirical formula
with observation data to get the parameter value and is suitable
only for simple parameter estimation. In the present work, due to
the complexity and non linearity of estimation problem,weuse the
second approach to minimize the errors between simulations and
some lumped observation values of variable u(x, t). In otherwords,
we minimize a cost function J defined as follows:

J =
1
2

N
j=1

 T

0

 L

0
δA(x − xj)u dx − umeas

j (xj, t)

2

dt

+
1
2
ε1

 L

0
∥ui

0(x) − ui
0F (x)∥

2dx

+
1
2
ε2

K
i=1

 L

0
∥αi(x) − αiF (x)∥2dx (3)

where T = optimization horizon (hours); L = considered spacial
length where the system takes place (m); N = number of obser-
vation values of u(x, t); umeas

j (xj, t) = measured value of u(x, t) at
observation position xj with xj ∈ [0, L]; αiF (x) = first guessed val-
ues of parameters; ui

oF = first guessed values of initial condition;
ε1 and ε2 = weighting factor applied to first guessing term to cali-
brate the estimated value and the guessed one and adjust the scale
of objective function. The term δA(x − xj) is an approximation of
Delta-Dirac function described by a Gaussian function with a very
small variance σ 2 as δA(x − xj) = e−(x−xj)2/σ 2

.

3. Adjoint-based approach

3.1. Variational analysis

From the previous analysis, the optimal values of state and
parameter must minimize the cost function in Eq. (3) and satisfy
also the system Eq. (1). This constraint and the continuity of the
first partial derivative of both system dynamics and cost function
lead to use the Lagrange multiplier with Lagrangian variable
λ(x, t), which allows to combine the system equation and cost
function into only one new cost functional L(λ, ρ, α), shortened
to L, as follows.

L = J +

 T

0

 L

0
λ


∂u
∂t

+
∂ f
∂x

− g(x, t)


dxdt  

A

. (4)

To deal with this optimization problem the common adjoint
method is used in order to obtain the adjoint system and establish
the gradient of cost functional with respect to the parameters
and state needing to be estimated. These gradients describe the
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