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a b s t r a c t

The Landau–Lifshitz equation describes the dynamics of magnetization inside a ferromagnet. This
equation is nonlinear and has an infinite number of stable equilibria. It is desirable to control the
system from one equilibrium to another. A control that moves the system from an arbitrary initial state,
including an equilibrium point, to a specified equilibrium is presented. It is proven that the second point
is an asymptotically stable equilibrium of the controlled system. The results are illustrated with some
simulations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Landau–Lifshitz equation is a partial differential equation
(PDE), which describes the magnetic behaviour within ferromag-
netic structures. This equation was originally developed to model
the behaviour of domain walls, which separate magnetic regions
within a ferromagnet (Landau & Lifshitz, 2008). Ferromagnets are
often found in memory storage devices such as hard disks, credit
cards or tape recordings. Each set of data stored in a memory de-
vice is uniquely assigned to a specific stable magnetic state of
the ferromagnet, and hence it is desirable to control magnetiza-
tion between different stable equilibria. This is difficult due to the
presence of hysteresis in the Landau–Lifshitz equation. Hysteresis
indicates the presence ofmultiple equilibria (Chow&Morris, 2014;
Morris, 2011). Because of this, a particular control can lead to dif-
ferentmagnetizations; that is, the particular path ofmagnetization
depends on the initial state of the system and looping in the in-
put–output map is typical (Chow & Morris, 2014; Morris, 2011).

There is now an extensive body of results on control and sta-
bilization of linear PDE’s; see for instance the books (Bensous-
san, 2007; Curtain & Zwart, 1995; Lasiecka & Triggiani, 2000a,b)
and the review paper (Morris, 2010). Stability results for the Lan-
dau–Lifshitz equation are often based on linearization (Carbou &
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Labbé, 2006a,b; Jizzini, 2011; Labbe, Privat, & Trelat, 2012). In
these works, the spectral properties of the linear operator are de-
termined. In Mayergoyz, Serpico, and Bertotti (2010), sufficient
assumptions are made that simplify a general form of the Lan-
dau–Lifshitz equation into an ordinary differential equation; and
based on this, the magnetization dynamics are shown to be stable.

The magnetic state of a ferromagnet can be changed by an
applied magnetic field, which is viewed as the control. From
this physically meaningful perspective, the control enters the
Landau–Lifshitz equation nonlinearly. In Carbou and Labbe (2012),
the Landau–Lifshitz equation is linearized and shown to have an
unstable equilibrium; and to stabilize this equilibrium a control
that is the average of the magnetization in one direction and zero
in the other two directions is used. In Carbou, Labbé, and Trélat
(2008, 2009), solutions to the Landau–Lifshitz equation are shown
to be arbitrarily close to domain walls given a constant control.
Experiments and numerical simulations demonstrating the control
of domains walls in a nanowire are presented in Noh, Miyamoto,
Okuda, Hayashi, and Kim (2012) and Wieser, Vedmedenko, and
Wiesendanger (2011).

In the next section, the uncontrolled Landau–Lifshitz equation
is described. It is known to have multiple stable equilibria
(Guo & Ding, 2008, Theorem 6.1.1). In Section 3, a control,
acting as the applied magnetic field, is introduced into the
Landau–Lifshitz equation nonlinearly. The control objective is to
steer the system dynamics between stable equilibrium points.
Results demonstrate the controlled Landau–Lifshitz equation is
stable, and the linearized controlled Landau–Lifshitz equation is
asymptotically stable. In Section 4, simulations for the full equation
are presented.
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2. Landau–Lifshitz equation

Consider the magnetization
m(x, t) = (m1(x, t),m2(x, t),m3(x, t)),
at position x ∈ [0, L] and time t ≥ 0 in a long thin ferromagnetic
material of length L > 0. If only the exchange energy term is
considered, themagnetization ismodelled by the one-dimensional
(uncontrolled) Landau–Lifshitz equation (Brown, 1963), (Guo &
Ding, 2008, Chapter 6)

∂m
∂t

= m × mxx − νm × (m × mxx) (1a)

m(x, 0) = m0(x) (1b)

where × denotes the cross product and ν ≥ 0 is the damping
parameter, which depends on the type of ferromagnet. The
term mxx denotes magnetization differentiated with respect to
x twice. The Landau–Lifshitz equation sometimes includes a
parameter called the gyromagnetic ratio multiplyingm×mxx. The
gyromagnetic ratio has been set to 1 for simplicity. Formore on the
damping parameter and gyromagnetic ratio, see Gilbert (2004).

The Landau–Lifshitz equation is a coupled set of three nonlinear
PDEs. It is assumed that there is nomagnetic flux at the boundaries
and so Neumann boundary conditions are appropriate:
mx(0, t) = mx(L, t) = 0. (1c)

Existence and uniqueness of solutions to (1) with different
degrees of regularity has been shown (Alouges & Soyeur, 1992;
Carbou & Fabrie, 2001).

Theorem 1 (Guo & Ding, 2008, Lemma 6.3.1). If ∥m0(x)∥2 = 1, the
solution,m, to (1a) satisfies

∥m(x, t)∥2 = 1 (2)

where ∥ · ∥2 is the Euclidean norm.
The following statement is a more restrictive version of the
theorem stated in Carbou and Fabrie (2001).

Theorem 2 (Carbou & Fabrie, 2001, Thm. 1.3,1.4). If m0 ∈ H2(0, L),
m0,x(0) = m0,x(L) = 0 and ∥m0∥2 = 1, then there exist a time
T ∗ > 0 and a unique solution m of (1) such that for all T < T ∗,
m ∈ C(0, T ;H2(0, L)) ∩ L2(0, L;H3(0, L)).

Withmore general initial conditions, solutions to (1) are defined
on L3

2 = L2([0, L]; R3) with the usual inner-product and norm.
The notation ∥ · ∥L3

2
is used for the norm. Define the operator

f (m) = m × mxx − νm × (m × mxx) , (3)
and its domain

D = {m ∈ L3
2 : mx ∈ L3

2, mxx ∈ L3
2, mx(0) = mx(L) = 0}. (4)

Theorem 3 (Chow, 2013, Theorem 4.7). The operator f (m) with
domain D generates a nonlinear contraction semigroup on L3

2.
Ferromagnets are magnetized to saturation (Cullity & Graham,

2009, Section 4.1); that is ∥m0(x)∥2 = Ms where Ms is the
magnetization saturation. In much of the literature, Ms is set
to 1; see for example, Alouges and Soyeur (1992), Carbou and
Fabrie (2001), Guo and Ding (2008, Section 6.3.1) and Lakshmanan
(2011). This convention is used here. Physically, this means that
at each point, x, the magnitude of m0(x) equals the magnetization
saturation. The initial condition m0(x) is furthermore assumed to
be real-valued, and hencem(x, t) for t > 0 is real-valued.

The set of equilibrium points of (1) is (Guo & Ding, 2008, Theo-
rem 6.1.1)

E = {a = (a1, a2, a3) : a1, a2, a3 constants and aTa = 1}. (5)

Theorem 4 (Chow, 2013, Theorem 4.11). The equilibrium set in (5) is
asymptotically stable in the L3

2-norm.

3. Controller design

In current applications, the control enters as an applied
magnetic field (Carbou & Labbé, 2006a,b; Carbou & Labbe, 2012;
Carbou et al., 2008, 2009). More precisely, a control, u(t), is
introduced into the Landau–Lifshitz equation (1a) as follows

∂m
∂t

= m × (mxx + u) − νm × (m × (mxx + u))

= m × mxx − νm × (m × mxx)

+ m × u − νm × (m × u) , (6)
m(x, 0) = m0(x).

As for the uncontrolled system, the boundary conditions are
mx(0, t) = mx(L, t) = 0. Eq. (6) is the Landau–Lifshitz equation
with a nonlinear control. Its existence and uniqueness results can
be found in Carbou and Fabrie (2001, Thm. 1.1, 1.2) and are similar
to Theorem 2.

As for the uncontrolled equation, since

1
2

∂∥m(x, t)∥2

∂t
= mT ∂m

∂t
= mT(m × mxx − νm × (m × mxx)

+ m × u − νm × (m × u)) = 0,

this implies ∥m∥2 = c , where c is a constant. The convention is to
take c = 1. It follows that any equilibrium point is trivially stable
in the L2-norm.

The goal is to choose a control so that the system governed
by the Landau–Lifshitz equation moves from an arbitrary initial
condition, possibly an equilibrium point, to a specified equilibrium
point r. The control needs to be chosen so that r becomes
a stable equilibrium point of the controlled system. It can be
shown that zero is an eigenvalue of the linearized uncontrolled
Landau–Lifshitz equation (Chow, 2013, Chapter 4.3.2). For finite-
dimensional linear systems, simple proportional control of a
system with a zero eigenvalue yields asymptotic tracking of a
specified state and this motivates choosing the control

u = k(r − m) (7)

where r ∈ E is an equilibrium point of the uncontrolled equation
(1) and k is a positive constant control parameter.

Theorem 5. For any r ∈ E and any positive constant k with control
defined in (7), r is a locally stable equilibrium point of (6) in the
H1-norm. That is, for any initial condition m0(x) ∈ D, where D is
defined in (4), the H1-norm of the error m − r does not increase.

Proof. Let B(r, p) = {m ∈ L3
2 : ∥m − r∥L3

2
< p} ⊂ D for some

constant 0 < p < 2. Note that since p < 2, then −r ∉ B(r, p). For
anym ∈ B(r, p), consider the H1-norm of the error

V (m) = k ∥m − r∥2
L3

2
+ ∥mx∥

2
L3

2
.

Taking the derivative of V ,

dV
dt

=

 L

0
k(m − r)Tṁdx +

 L

0
mT

xṁxdx

=

 L

0
k(m − r)Tṁdx −

 L

0
mT

xxṁdx

=

 L

0


k(m − r)Tṁ − mT

xxṁ

dx. (8)

Let h = m − r, then the integrand becomes

khTṁ − mT
xxṁ (9)
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