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a b s t r a c t

Linear Quadratic Gaussian (LQG) systems are well-understood and methods to minimize the expected
cost are readily available. Less is known about the statistical properties of the resulting cost function.
The contribution of this paper is a set of analytic expressions for the mean and variance of the LQG cost
function. These expressions are derived using two different methods, one using solutions to Lyapunov
equations and the other using only matrix exponentials. Both the discounted and the non-discounted
cost function are considered, as well as the finite-time and the infinite-time cost function. The derived
expressions are successfully applied to an example system to reduce the probability of the cost exceeding
a given threshold.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Linear-Quadratic-Gaussian (LQG) control paradigm is
generallywell-understood in literature. (See for instance Anderson
& Moore, 1990; Åström, 1970; Bosgra, Kwakernaak, & Meinsma,
2008; Skogestad & Postlethwaite, 2005.) There are many methods
available of calculating and minimizing the expected cost E[J].
However, much less is known about the resulting distribution of
the cost function J . Yet in many cases (like in machine learning
applications, in risk analysis and similar stochastic problems)
knowledge of the full distribution of the cost function J , or at
least knowledge of its variance V[J], is important. That is the
focus of this paper. We derive analytical expressions for both the
mean E[J] and the variance V[J] of the cost function distribution
for a variety of cases. The expressions for the varianceV[J]have not
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been published before, making that the main contribution of this
paper.

The cost function J is usually defined as an integral over a
squared non-zero-mean Gaussian process, turning its distribution
into a generalized noncentral χ2 distribution. This distribution
does not have a known Probability Density Function (PDF),
although its properties have been studied before in literature, for
instance in Rice (1944), Sain and Liberty (1971) and Schwartz
(1970) andmethods to approximate it are discussed in Mathai and
Provost (1992) and Davies (1980). No expressions for the variance
of the LQG system cost function are given though.

In LQG control most methods focus on the expected cost E[J],
but not all. For instance, Minimum Variance Control (MVC) (see
Åström, 1970) minimizes the variance of the output y, while Vari-
ance Constrained LQG (VCLQG) (see Collins & Selekwa, 1999; Con-
way & Horowitz, 2008) minimizes the cost function subject to
bounds on the variance of the state x and/or the input u. Alterna-
tively, in Minimal Cost Variance (MCV) control (see Kang, Aduba,
& Won, 2014; Won, Schrader, & Michel, 2008) the mean cost E[J]
is fixed through an equality constraint and the cost variance V[J]
(or alternatively the cost cumulant) is then minimized. However,
expressions for the cost variance V[J] are still not given.

This paper is set up as follows. We present the problem formu-
lation in Section 2 and derive the expressions that solve this prob-
lem in Section 3, also making use of the appendices. Section 4 then
shows how the equations can be applied to LQG systems, which
is subsequently done in Section 5. Finally, Section 6 contains the
conclusions.
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Table 1
The theorems with which the mean and variance of J and JT can be
found, as well as the requirements for these theorems.

If α ≠ 0 If α = 0 Requirements

E[JT ] Theorem1 Theorem3 A and Aα Sylvester
E[J] Theorem 2 α < 0 and Aα stable
V[JT ] Theorem4 Theorem6 A−α, A, Aαand A2α Sylvester
E[J] Theorem 5 α < 0 and Aα stable

2. Problem formulation

We consider continuous linear systems subject to stochastic
process noise. Formally, we write these as

dx(t) = Ax(t) dt + dw(t), (1)

where w(t) is a vector of Brownian motions. (Note that (1) is
not an LQG system, because it is lacking input. The extension to
LQG systems will be discussed in Section 4.) As a result, dw(t)
is a Gaussian random process with zero-mean and an (assumed
constant) covariance of V dt . Within the field of control (see for
instance Skogestad & Postlethwaite, 2005) this system is generally
rewritten according to

ẋ(t) = Ax(t) + v(t), (2)

where v(t) is zero-mean Gaussian white noise with intensity V .
That is, E[v(t)vT (τ )] = Vδ(t − τ), with δ(.) the Kronecker
delta function. From a formal mathematical perspective this
simplification is incorrect, because v(t) is not measurable with
nonzero probability. However, since this notation is common in the
control literature, and since it prevents us from having to evaluate
the corresponding Itô integrals, we will stick with it, although the
reader is referred to Øksendal (1985) for methods to properly deal
with stochastic differential equations.

We assume that the initial state x(0) = x0 has a Gaussian
distribution satisfying

µ0 ≡ E[x0] and Σ0 ≡ E[x0xT0]. (3)

Note that the variance of x0 is not Σ0, but actually equals Σ0 −

µ0µ
T
0 . We will use two different cost functions in this paper: the

infinite-time cost J and the finite-time cost JT , respectively defined
as

J ≡


∞

0
e2αtxT (t)Qx(t) dt, (4)

JT ≡

 T

0
e2αtxT (t)Qx(t) dt, (5)

where Q is a user-defined symmetric weight matrix. The param-
eter α can be positive or negative. If it is positive, it is known as
the prescribed degree of stability (see Anderson & Moore, 1990 or
Bosgra et al., 2008), while if it is negative (like in Reinforcement
Learning applications) it is known as the discount exponent.

3. Mean and variance of the LQG cost function

In this section we derive expressions for E[J],E[JT ],V[J]
and V[JT ]. An overview of derived theorems, as well as the
corresponding requirements, is shown in Table 1.

3.1. Notation and terminology

Concerning the evolution of the state, we define µ(t) ≡

E[x(t)], Σ(t) ≡ E[x(t)xT (t)] and Σ(t1, t2) ≡ E[x(t1)xT (t2)].
These quantities can be found through the theorems of Appendix A.

We define thematrices Aα ≡ A+αI and similarly Akα ≡ A+kαI
for any number k. We also define XQ

kα and X̄Q
kα to be the solutions of

the Lyapunov equations

AkαX
Q
kα + XQ

kαA
T
kα + Q = 0, (6)

AT
kα X̄

Q
kα + X̄Q

kαAkα + Q = 0. (7)

We often have α = 0. In this case A0 equals A, and we similarly
shorten XQ

0 to XQ . The structure inherent in the Lyapunov equation
induces interesting properties in its solutions XQ

kα , which are
outlined in Appendix B.

We define the time-dependent solution XQ
kα(t1, t2) as

XQ
kα(t1, t2) =

 t2

t1
eAkα tQeA

T
kα t dt. (8)

This integral can be calculated efficiently by solving a Lyapunov
equation. (See Theorem 14.) Often it happens that the lower limit
t1 of XQ

kα(t1, t2) equals zero. To simplify notation, we then write
XQ
kα(t) ≡ XQ

kα(0, t). Another integral solution X̃Q
k1α,k2α

(T ) is defined
as

X̃Q
k1α,k2α

(T ) ≡

 T

0
eAk1α(T−t)QeAk2α t dt. (9)

This quantity can be calculated (see van Loan, 1978) through

X̃Q
α1,α2

(T ) =

I 0


exp


Aα1 Q
0 Aα2


T


0
I


. (10)

Considering terminology, we say that amatrix A is stable (Hurwitz)
if and only if it has no eigenvalue λi with a real part equal to or
larger than zero. Similarly, we say that a matrix A is Sylvester if and
only if it has no two eigenvalues λi and λj (with possibly i = j)
satisfying λi = −λj. This latter definition is new in literature, but
to the best of our knowledge, no term for this matrix property has
been defined earlier.

3.2. The expected cost

Wenowexamine the expected costsE[J] andE[JT ]. Expressions
for these costs are already known for various special cases. (See for
instance Åström, 1970; Bosgra et al., 2008.) To provide a complete
overview of the subject, we have included expressions which are
as general as possible.

Theorem 1. Consider system (2). Assume that α ≠ 0 and that A and
Aα are both Sylvester. The expected value E[JT ] of the finite-time cost
JT (5) then equals

tr


Σ0 − e2αTΣ(T ) +

1 − e2αT

 −V
2α


X̄Q

α


. (11)

Proof. From (5) follows directly that

E[JT ] = tr
 T

0
e2αtΣ(t) dt Q


= tr (Y (T )Q ) , (12)

where Y (T ) is defined as the above integral. To find it, we
multiply (A.7) by e2αt and integrate it to get T

0
e2αtΣ̇(t) dt = AY (T ) + Y (T )AT

+

 T

0
e2αtV dt. (13)

The left part, through integration by parts, must equal T

0
e2αtΣ̇(t) dt =


e2αTΣ(T ) − Σ0


− 2αY (T ). (14)
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