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a b s t r a c t

A modification of the Parameterized Tube Model Predictive Control (PTMPC) strategy for linear systems
with additive disturbances is proposed, which reduces the dependence of the number of optimization
variables on horizon length from quadratic to linear by using a triangular striped prediction structure.
Unlike PTMPC, which assumes a fixed linear terminal feedback law for predictions, the proposed
prediction scheme allows disturbance compensation to extend beyond the initial N-step prediction
horizon. The resulting scheme can potentially outperform PTMPC in terms of the size of the domain of
attraction and allows for a longer horizon N for the same computational demand.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Robust model predictive control (RMPC) of linear systems
subject to additive uncertainty is an important area of research.
Optimal RMPC requires the solution of dynamic programming
(Bertsekas, 1995) or minimax problems (Scokaert & Mayne,
1998) and is computationally intractable, thus a compromise
between sub-optimality and complexity is necessary. Early RMPC
considered open-loop solutions, where a single input sequence is
determined for all disturbance realizations. This is conservative
because it ignores information on future states and uncertainties
that will be available for use by the controller and can thus
lead to poor performance and infeasibility. Quasi-closed loop
formulations on the other hand optimize perturbations on a pre-
stabilizing law (Langson, Chryssochoos, Raković, & Mayne, 2004;
Lee & Kouvaritakis, 1999). They provide an improvement, but are
still conservative because pre-stabilization is designed offline.

Optimality is improved upon by affine-in-the-disturbance MPC
(ADMPC) (Goulart, Kerrigan, & Maciejowski, 2006; Lofberg, 2003).
This uses feedforward plus linear disturbance compensation with
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a triangular structure in the near horizon, while in the far horizon
it deploys fixed state feedback. ADMPC has been superseded by
parameterized tube MPC (PTMPC) (Raković, Kouvaritakis, Cannon,
Panos, & Findeisen, 2012) which exploits a separable triangular
prediction structure of partial tubes, the first of which describes
the nominal dynamics and the rest are associated with future
disturbances. These are unknown and are defined in terms of the
vertices of the allowable set of disturbances. The PTMPC policy
is piecewise-affine-in-the-disturbance and hence leads to larger
domains of attraction than ADMPC. The number of variables and
constraints grows quadratically with the prediction horizon N
in both ADMPC and PTMPC which therefore are limited to low-
dimensional systems or small N .

Here we present a RMPC formulation that is a modification of
PTMPC in which the degrees of freedom affect (directly) the inputs
over the entire prediction horizon with a striped structure. This
idea has been explored before but in the context of constructing
parameterized robust control invariant sets through the use of a
sequence contracting technique (Raković & Baric, 2010). It has also
been explored in Stochastic MPC (Kouvaritakis, Cannon, & Muñoz-
Carpintero, 2013), where affine-in-the-disturbance compensation
extends over the infinite far prediction horizon according to a fixed
control law computed offline. In our approach the disturbance
compensation in the far horizon is computed online, and leads
to a terminal control law more general than linear feedback.
This is achieved by expressing predictions as the sum of a
nominal sequence and a single sequence associated with all
particular future disturbances. This gives rise to a separable striped
disturbance compensation scheme which is allowed to extend
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over an infinite prediction horizon and leads to a number of
variables and constraints which grows linearly withN (rather than
quadratically as for PTMPC). Additionally, allowing for disturbance
compensation into the far horizon implies a constraint relaxation.
Simulations show that this strategy can, for a comparable number
of degrees of freedom and constraints, lead to larger domains of
attraction.

Section 2 gives the system description and a brief review
of the separable scheme of Raković et al. (2012). Our strategy
is introduced in Section 3, and Section 4 analyzes the control
theoretic properties of two variants of the strategy: one with
exponential convergence to a known minimal robust invariant
set; and another based on input-to-state stability, as presented
in Muñoz-Carpintero, Kouvaritakis, and Cannon (2014), which
enjoys increased control authority but does not have the guarantee
of convergence to the minimal robust invariant set. Section 5
presents an illustration by simulation of the benefits of the
proposed strategy and conclusions are drawn in Section 6.

Notation: N+ and R+ denote the sets of positive integers and
positive reals. N = N+ ∪ {0} and N[a,b] = {a, a + 1, . . . , b}. For
X, Y ⊂ Rn, X ⊕ Y = {x+ y : x ∈ X, y ∈ Y } denotes the Minkowski
sum, and the image of X under M ∈ Rm×n is MX = {Mx : x ∈ X}.
For X = conv({x1, . . . , xn}) (where conv(·) denotes the convex
hull) and A, B ∈ Rm×n, (A, B)X = conv ({(Ax, Bx) : x ∈ X}). For
Y = {y : Ely ≤ 1, l ∈ N[1,ny]}, the Y -distance function of x is
distY (x) = max({Elx − 1 : l ∈ N[1,ny]} ∪ {0}), and the maximum
Y -distance function of X is maxdistY (X) = max({Elx − 1 : x ∈

X, l ∈ N[1,ny]} ∪ {0}).

2. System description and separable prediction scheme

Consider the linear, discrete-time system and constraints

x+
= Ax + Bu + w, (1)

Fx + Gu ≤ 1, (2)

with x ∈ Rnx , u ∈ Rnu , w ∈ W ⊂ Rnx . F ∈ Rnc×nx and G ∈ Rnc×nu .
Here W = conv


{w̃i : i ∈ N[1,q]}


is a polytope that contains the

origin and Y = {y = (x, u) : Flx + Glu ≤ 1, l ∈ N[1,nc ]} is
a polytope that contains the origin in its interior; the subscript l
denotes the lth row.

A robust MPC strategy with a separable prediction scheme is
presented in Raković et al. (2012) in which, since the system is
linear, the predictions can be split in sequences, one associated
with the nominal dynamics (w ≡ 0) and the rest associated
with each future disturbance. The 0th partial state and control
sequences x(0,:) = {x(0,k)}k∈N and u(0,:) = {u(0,k)}k∈N account for
the nominal dynamics satisfying at each prediction time k ∈ N

x(0,k+1) = Ax(0,k) + Bu(0,k), with x(0,0) = x, (3)

where x is the current state. Similarly, the dynamical contribution
of the disturbance acting at the (j − 1)th prediction time, wj−1,
j ∈ N+ is given by the jth partial state and control sequences,
x(j,:) =


x(j,k)


k∈N[j,∞)

and u(j,:) =

u(j,k)


k∈N[j,∞)

, which for k ∈

N[j,∞) satisfy

x(j,k+1) = Ax(j,k) + Bu(j,k), with x(j,j) = wj−1. (4)

Since wj−1 is unknown, the predictions of x(j,k) and u(j,k) are also
unknown, however it is possible to find exactly the sets that
contain them. Considering the extreme realizations, w̃i, i ∈ N[1,q],
of wj−1, and denoting corresponding jth partial extreme state
and control sequences as x(i,j,:) = {x(i,j,k)}k∈N[j,∞)

and u(i,j,:) =

{u(i,j,k)}k∈N[j,∞)
, we define u(j,k) =

q
i=1 λi(wj−1)u(i,j,k) in terms

Fig. 1. Triangular prediction scheme of PTMPC – Inputs.

of convex interpolation parameters λi(wj−1), i ∈ N[1,q] such that
wj−1 =

q
i=1 λi(wj−1)w̃i, and it follows that

x(j,k) ∈ X(j,k) = conv


x(i,j,k) : i ∈ N[1,q]


,

u(j,k) ∈ U(j,k) = conv


u(i,j,k) : i ∈ N[1,q]


,
(5)

where the dynamics of the jth partial extreme state and control
sequences for i ∈ N[1,q], j ∈ N+, are given by

x(i,j,j) = w̃i, (6a)
x(i,j,k+1) = Ax(i,j,k) + Bu(i,j,k), k ∈ N[j,∞). (6b)

Then the full predictions are given by

xk =

k

j=0
x(j,k), uk =

k

j=0
u(j,k), ∀k ∈ N (7)

thus defining a triangular prediction structure as shown for the
inputs in Fig. 1 (the case for the states is analog), where from (5)
and (7), the full predicted inputs are contained in sets given by the
Minkowski sum of the elements in each column.

Assumption 1. (i) The pair (A, B) is stabilizable; (ii) The matrix
gain K is such that Φ = A + BK is strictly stable and the minimal
robust invariant set of (1) under u = Kx, Ω∞

K , satisfies (I, K)Ω∞

K ∈

interior(Y).

A control policy is defined implicitly in this separable prediction
scheme. From (7) the predicted inputs can be re-written as uk =

u(0,k)+
k

j=1 u(j,k), whereu(j,k) is a convex interpolation ofu(i,j,k), i ∈

N[1,q] depending on the value ofw(j−1). Thus, the associated control
policy is piecewise-affine-in-the-disturbance (Raković et al., 2012).
Note that there is no need to know the interpolation parameters,
as we only need to know the extreme trajectories to guarantee
feasibility.

The first N prediction steps are referred to as Mode 1 and the
remainder as Mode 2, where it is usual to deploy a stabilizing
terminal control law. Then, in Raković et al. (2012), x(0,k), u(0,k),
x(i,j,k) and u(i,j,k) are free optimization variables in Mode 1, while
in Mode 2 u(0,k) and u(i,j,k) are associated to the terminal control
law u = Kx and are given by u(0,k) = Kx(0,k) and u(i,j,k) = Kx(i,j,k)
(see Fig. 1). On the other hand, a striped structure to reduce the
number of variables and constraints is invoked in this paper (see
Fig. 2). The details are presented next.

3. The RMPC Strategy: Striped prediction scheme and con-
straints

Consider the following structural constraints in addition to
(3)–(7): for j ∈ N+, k ∈ N[j,∞), i ∈ N[1,q]

u(i,j,k) := u(i,1,k−j+1), x(i,j,k) = x(i,1,k−j+1), (8)

which imply that X(j,k) = X(1,k−j+1) and U(j,k) = U(1,k−j+1), so that
the elements on each diagonal below the first row (see Fig. 2) are
the same, yielding a striped structure. The 1st partial extreme state
and controls x(i,1,k), u(i,1,k) are free optimization variables for k ∈

N[1,N] and k ∈ N[1,N−1], respectively, and we fix u(i,1,k) = Kx(i,1,k)
for k ∈ N[N,∞). Thus all the jth partial sequences are fully defined
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