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This paper focuses on filter design in the frequency domain; specifically, the frequency behavior of one 
type of IIR filter called digital biquadratic filter is analyzed. First, similar mathematical approaches were 
used to define two normalized functions: one for the stopband and another for the passband. These two 
functions can be combined to create a cost function, and therefore, used by optimization algorithms to 
design digital filters. Computer simulations allowed building color maps to analyze this cost function. 
These maps describe areas that allow understanding visually the effect of the poles and zeros of the 
filter over its frequency behavior. The areas described by these maps introduce background information 
that can be used to design or optimize digital filters with custom frequency responses. Several tests were 
performed to establish the validity of the proposed cost function.
Additionally, it was shown that the cost function can be easily computed using a polynomial approxima-
tion. Therefore, instead of using uniformly distributed frequency points, the frequency analysis is 
performed at the Chebyshev nodes improving accuracy while using very few terms in the approximation. 
This approximation can be used to speed up the computation of the cost function, and consequently 
reduce optimization time for complex filters composed of several biquadratic sections.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the field of Digital Signal Processing (DSP), a filter is a build-
ing block that removes undesired signal components. Digital filters 
are used for high-speed digital communications, and in systems to 
process audio and video, see [24] and [30]. There are two main 
types of digital filters: Infinite Impulse Response (IIR) filters and 
Finite Impulse Response (FIR) filters. In practice, IIR filters often 
provide a better performance with less computations than FIR fil-
ters, see [28] for more information about the implementation of 
DSP algorithms and analytical modern procedures. The typical uni-
modal error surface used to design FIR filters make gradient based 
algorithms very effective in the design of these filters, [11]. On 
the other hand, gradient based algorithms may lead to a local 
minimum when designing IIR filters because the error surface is 
nonlinear and, in most cases, it is a multi-modal function, see [7]. 
Additionally, some recursive filters may become unstable and can-
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not easily provide a linear-phase response as FIR filters can, see 
[13], [18] and [27].

In recent years, many heuristic optimization design methods 
have been developed, such as: Simulated Annealing, Genetic Al-
gorithms, Particle Swarm Optimization, etc., see [1], [2], [14]
and [25]. One of these heuristic methods is based on Artificial 
Bee Colony (ABC) algorithms to design adaptive IIR filters, see [11]. 
ABC algorithms are inspired by the collective behavior of insects 
and can be used in optimization problems. Karaboga shows that it 
is possible to used a modified ABC algorithm to design IIR filters, 
see [10] and [11]. As the error surface for designing an IIR filter is 
usually nonlinear and may have several local minima, the authors 
of [3] proposed a seeker-optimization algorithm (SOA) for filter 
design. They compared the performance of their algorithm with 
the performance of particle swarm optimization algorithms and 
genetic algorithms; they conclude that SOA is capable of estimat-
ing the filter coefficients for a wide variety of IIR structures. Thus, 
digital filter design has been the motivation behind the develop-
ment of several algorithms, see [17] and [21]. For instance, the 
authors of [16] proposed the use of Differential Evolution to iden-
tify the most efficient implementation of a IIR receiver filter for a 
communication system, see [29]. In the same context, the authors 
of [12] proposed a method to use particle swarm optimization to 
design band pass and band stop infinite impulse response filters. 
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In medical research, filtering is very important because it is used 
to analyze signals produced by the body. For instance, the authors 
of [26] considered different types of digital filters to process elec-
troencephalographic data, in order to reduce distortion and bias in 
the signals under study. The authors of [23] analyze the application 
of a Chebyshev approximation to IIR digital filters. In this context, 
it is clear that the quickly computation of the cost function is very 
important in the field of digital filter design.

This paper proposes a cost function that is based on polyno-
mial approximation to create color maps to analyze the behavior of 
IIR filters that are implemented using biquadratic structures. These 
maps display color areas that can be used to inspect the behavior 
of the cost function. The main application of this cost function is 
the design of IIR filters using optimization algorithms. Additionally, 
we suggest a Chebyshev approximation to speed up the computa-
tion of the proposed cost function.

1.1. Biquad filter

In the field of digital signal processing, a digital biquadratic fil-
ter is a type of linear filter that has a system function which is 
the ratio of two quadratic functions. These filters are commonly 
known as biquad filters, and they contain two poles and two ze-
ros. The system function of a biquad filter is given by

H(z) = G
1 + μ1z−1 + μ2z−2

1 + λ1z−1 + λ2z−2
, (1)

where G is the filter gain, and the constants μ1, μ2, λ1 and λ2
determine the behavior of the filter. Specifically, its two zeros are 
defined by the values of μ1 and μ2; while its poles are obtained 
by the values of λ1 and λ2. For a biquad filter to be stable, the 
values of λ1 and λ2 are computed so that both poles are inside 
the unit circle.

Biquad filters are very important because they can be used to 
implement high-order Infinite Impulse Response (IIR) filters. The 
main advantage of using a cascade of biquad filters (to implement 
an IIR filter of high order) is to improve the stability due to the 
quantization of the coefficients. In fact, previous research indicates 
that the physical structure of the filter has a big influence on the 
error introduced by quantization effects and finite coefficient size, 
see the references in [4] and [5]. Deczky concluded that the cas-
cade and parallel forms have some advantages when compared 
with the direct form. Essentially, the stability of the cascade form 
has been thoroughly studied; not to mention that the cascade form 
is not affected by quantization as much as the direct form is.

2. Proposed method

Computer-aided design of IIR digital filters involves the use of 
an optimization method to minimize the error between the mag-
nitude of the desired response |Hd(ω)| and the magnitude of the 
frequency response |H(ω)| of the filter. One of the most common 
error function used in computer-aided design of IIR digital filters is

Error = 1

N

N∑
k=1

w(ωk) [|H(ωk)| − |Hd(ωk)|]2p , (2)

where p is a positive integer value and w(ωk) is a weighting 
function. Equation (2) is a convenient and simple cost function to 
design IIR digital filters. However, it requires the use of a weight-
ing function w(ωk). For simplicity, some researches assume that 
w(ωk) = 1 for k = 1, 2, ...N and p = 2, see [8]. For these values of 
w(ωk) and p, Equation (2) is the Mean Square Error (MSE), which 
is one of the most common error functions used in the field of 
optimization.

MSE = 1

N

N∑
k=1

[|H(ωk)| − |Hd(ωk)|]2 (3)

Instead of using the MSE of Equation (3), some authors prefer the 
Root Mean Square Error (RMSE) defined as

RMSE = √
MSE, (4)

or the Mean Absolute Error (MAE), see [9], defined as

MAE = 1

N

N∑
k=1

abs (|H(ωk)| − |Hd(ωk)|) , (5)

where the abs function computes the absolute value. These error 
functions are the most commonly used in IIR filter design, each 
of them has advantages and disadvantages. Note that these er-
ror functions, in general, are special cases of Equation (2) which 
requires running the optimization algorithm several times. That 
is, for each weighting function the optimization algorithm is exe-
cuted, then the actual frequency response of the filter is evaluated. 
If the response of the filter is acceptable, the design process is 
completed. However, if the response of the filter is not acceptable, 
a new weighting function must be proposed and the optimization 
algorithm must again be executed. Another common problem in 
Equation (2) is the value of p. For simplicity, some authors use 
p = 1, see [12], but to meet the minimax approximation it is rec-
ommended to use at least the sequence: 2p = 2, 4, 10, 40. The 
authors of [4] indicated that the largest index they tried was 40, 
which gave satisfactory results for most of the problems they at-
tempted. This paper proposes a cost function than can be used to 
design IIR digital filters executing the optimization algorithm only 
once without the need of adjusting parameters.

The system function of Equation (1) can be used to represent 
the system function of a cascade of M biquad sections in terms of 
its zeros and poles, see [19]. Thus, for simplicity of notation, we 
assume that all poles and zeros occur in complex conjugate pairs 
so that

H(z) = G
M∏

m=1

(1 − ame jαm z−1)(1 − ame− jαm z−1)

(1 − bme jβm z−1)(1 − bme− jβm z−1)
, (6)

where ame jαm and ame− jαm are the zeros of the system function, 
while bme jβm and bme− jβm are its poles. Thus, am and bm are the 
magnitude of its zeros and poles respectively. In this case, the cor-
responding phases are denoted by αm and βm . If z = e jω (see [20]), 
then,

H(ω) = G
M∏

m=1

(1 − ame jαm e− jω)(1 − a− jαm
m e− jω)

(1 − bme jβm e− jω)(1 − b− jβm
m e− jω)

. (7)

The magnitude of the frequency response of this filter can be ex-
pressed as

|H(ω)| = |G|
M∏

m=1

|1 − ame− j(ω−αm)||1 − a− j(ω+αm)
m |

|1 − bme− j(ω−βm)||1 − b− j(ω+βm)
m |

, (8)

which can be written as

|H(ω)| = |G|
M∏

m=1

U (ω;ame jαm)

U (ω;bme jβm )
, (9)

where

U (ω;ame jαm)

=
√

(1 − 2am cos(ω − αm) + a2
m)(1 − 2am cos(ω + αm) + a2

m),

(10)
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