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Monte Carlo methods are essential tools for Bayesian inference. Gibbs sampling is a well-known Markov 
chain Monte Carlo (MCMC) algorithm, extensively used in signal processing, machine learning, and statis-
tics, employed to draw samples from complicated high-dimensional posterior distributions. The key point 
for the successful application of the Gibbs sampler is the ability to draw efficiently samples from the full-
conditional probability density functions. Since in the general case this is not possible, in order to speed 
up the convergence of the chain, it is required to generate auxiliary samples whose information is even-
tually disregarded. In this work, we show that these auxiliary samples can be recycled within the Gibbs 
estimators, improving their efficiency with no extra cost. This novel scheme arises naturally after pointing 
out the relationship between the standard Gibbs sampler and the chain rule used for sampling purposes. 
Numerical simulations involving simple and real inference problems confirm the excellent performance 
of the proposed scheme in terms of accuracy and computational efficiency. In particular we give em-
pirical evidence of performance in a toy example, inference of Gaussian processes hyperparameters, and 
learning dependence graphs through regression.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

‘Reduce, Reuse, Recycle’
The Greenpeace motto

Monte Carlo algorithms have become very popular over the 
last decades [1,2]. Many practical problems in statistical signal 
processing, machine learning and statistics, demand fast and accu-
rate procedures for drawing samples from probability distributions 
that exhibit arbitrary, non-standard forms [3,4], [5, Chapter 11]. 
One of the most popular Monte Carlo methods are the families 
of Markov chain Monte Carlo (MCMC) algorithms [3,2] and par-
ticle filters [6,7]. The MCMC techniques generate a Markov chain 
(i.e., a sequence of correlated samples) with a pre-established tar-
get probability density function (pdf) as invariant density [1,8].

The Gibbs sampling technique is a well-known MCMC algo-
rithm, extensively used in the literature in order to generate sam-
ples from multivariate target densities, drawing each component 
of the samples from the full-conditional densities [9–14].1 In or-
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1 In general these full-conditionals are univariate. Nevertheless, block-wise Gibbs 

sampling approaches where several random variables are updated simultaneously, 

der to draw samples from a multivariate target distribution, the 
key point for the successful application of the standard Gibbs sam-
pler is the ability to draw efficiently from the univariate condi-
tional pdfs [1,2]. The best scenario for Gibbs sampling occurs when 
specific direct samplers are available for each full-conditional, e.g. 
inversion method or, more generally, some transformation of a ran-
dom variable [16,2]. Otherwise, other Monte Carlo techniques, such 
as rejection sampling (RS) and different flavors of the Metropolis–
Hastings (MH) algorithms, are typically used within the Gibbs sam-
pler to draw from the complicated full-conditionals. The perfor-
mance of the resulting Gibbs sampler depends on the employed 
internal technique, as pointed out for instance in [17–20].

In this context, some authors have suggested to use more steps 
of the MH method within the Gibbs sampler [21–23]. Moreover, 
other different algorithms have been proposed as alternatives to 
the MH technique [17,10,24]. For instance, several automatic and 
self-tuning samplers have been designed to be used primarily 

have been proposed to speed up the convergence of the Gibbs sampler [15]. How-
ever, unless direct sampling from the multi-variate full-conditionals is feasible, 
these approaches still result in an increased difficulty of drawing samples and a 
higher computational cost per iteration. Furthermore, the performance of the overall 
algorithm can decrease if the blocks are not properly chosen, especially when direct 
sampling from the multivariate full-conditionals is unfeasible [1,8,2]. The novel re-
cycling scheme can also be used in the block approach.
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within-Gibbs: the adaptive rejection sampling (ARS) [25,26], the 
griddy Gibbs sampler [27], the FUSS sampler [20], the Adaptive 
Rejection Metropolis Sampling (ARMS) method [18,28,29,14], and 
the Independent Doubly Adaptive Rejection Metropolis Sampling 
(IA2RMS) technique [19], just to name a few.

Most of the previous solutions require performing several 
MCMC steps for each full-conditional in order to improve the per-
formance, although only one of them is considered to produce 
the resulting Markov chain because the rest of samples play the 
mere role of auxiliary variables. Strikingly, they require an increase 
in the computational cost that is not completely paid off: several 
samples are drawn from the full-conditionals, but only a subset 
of these generated samples is employed in the final estimators. In 
this work, we show that the rest of generated samples can be di-
rectly incorporated within the corresponding Gibbs estimator. We 
call this approach the Recycling Gibbs (RG) sampler since all the sam-
ples drawn from each full-conditional can be used also to provide 
a better estimation, instead of discarding them.

The consistency of the proposed RG estimators is guaranteed, 
as will be noted after considering the connection between the 
Gibbs scheme and the chain rule for sampling purposes [16,2]. In 
particular, we show that the standard Gibbs approach is equiva-
lent (after the burn-in period) to the standard chain rule, whereas 
RG is equivalent to an alternative version of the chain rule pre-
sented in this work as well. RG fits particularly well combined 
with adaptive MCMC schemes where different internal steps are 
performed also for adapting the proposal density, see e.g. [18,19,
29,14]. The novel RG scheme allows us to obtain better perfor-
mance without adding any extra computational cost. This will be 
shown through intensive numerical simulations. First, we test RG 
in a simple toy example with a bimodal bivariate target. We also 
include experiments for hyper-parameter estimation in Gaussian 
Processes (GPs) regression problems with the so-called automatic 
relevance determination (ARD) kernel function [5]. Finally, we apply 
the novel scheme in real-life geoscience problems of dependence 
estimation among bio-geo-physical variables from satellite sensory 
data. The MATLAB code of the numerical examples is provided at 
http://isp.uv.es/code/RG.zip.

The remainder of the paper is organized as follows. Section 2
fixes notation and recalls the problem statement of Bayesian infer-
ence. The standard Gibbs sampler and the chain rule for sampling 
purposes are summarized in Section 3, highlighting their connec-
tions. In the same section, we then introduce an alternative chain 
rule approach, which is useful for describing the novel scheme. 
The RG technique proposed here is formalized in Section 4. Sec-
tions 5 provides empirical evidence of the benefits of the proposed 
scheme, considering different multivariate posterior distributions. 
Finally, Section 6 concludes and outlines further work.

2. Bayesian inference

Machine learning, statistics, and signal processing often face the 
problem of inference through density sampling of potentially com-
plex multivariate distributions. In particular, Bayesian inference is 
concerned about doing inference about a variable of interest ex-
ploiting the Bayes’ theorem to update the probability estimates 
according to the available information. Specifically, in many appli-
cations, the goal is to infer a variable of interest, x = [x1, . . . , xD ] ∈
R

D , given a set of observations or measurements, y ∈ R
P . In 

Bayesian inference all the statistical information is summarized by 
means of the posterior pdf, i.e.,

π̄ (x) = p(x|y) = �(y|x)g(x)

Z(y)
, (1)

where �(y|x) is the likelihood function, g(x) is the prior pdf and 
Z(y) is the marginal likelihood (a.k.a., Bayesian evidence). In gen-

eral, Z(y) is unknown and difficult to estimate in general, so we 
assume to be able to evaluate the unnormalized target function,

π(x) = �(y|x)g(x). (2)

The analytical study of the posterior density π̄ (x) ∝ π(x) is often 
unfeasible and integrals involving π̄ (x) are typically intractable. 
For instance, one might be interested in the estimation of

I =
∫
RD

f (x)π̄ (x)dx, (3)

where f (x) is a squared integrable function (with respect to π̄ ). 
In order to compute the integral I numerical approximations are 
typically required. Our goal here is to approximate this integral 
by using Monte Carlo (MC) quadrature [1,2]. Namely, consider-
ing T independent samples from the posterior target pdf, i.e., 
x(1), . . . , x(T ) ∼ π̄ (x), we can write

Î T = 1

T

T∑
t=1

f (x(t))
p−→ I. (4)

This means that for the weak law of large numbers, ̂ IT converges 
in probability to I: that is, for any positive number ε > 0, we 
have limT →∞ Pr(|̂IT − I| > ε) = 0. In general, a direct method for 
drawing independent samples from π̄ (x) is not available, and alter-
native approaches, e.g., MCMC algorithms, are needed. An MCMC 
method generates an ergodic Markov chain with invariant density 
π̄ (x) (a.k.a., stationary pdf). Even though, the generated samples 
{x(1), . . . , x(T )} are then correlated in this case, ̂ IT is still a consis-
tent estimator.

Within the MCMC framework, we can consider a block ap-
proach working directly into the D-dimensional space, e.g., using 
a Metropolis–Hastings (MH) algorithm [2], or a component-wise 
approach [30–32] working iteratively in different uni-dimensional 
slices of the entire space, e.g., using a Gibbs sampler [1,8].2 In 
many applications, and for different reasons, the component-wise 
approach is the preferred choice. For instance, this is the case 
when the full-conditional distributions are directly provided or 
when the probability of accepting a new state with a complete 
block approach becomes negligible as the dimension of the prob-
lem D increases. In the following section, we outline the standard 
Gibbs approach, and remark its connection with the chain rule 
method. The main notation and acronyms of the work are sum-
marized in Table 1.

3. Gibbs sampling and the chain rule method

This section reviews the fundamentals about the standard Gibbs 
sampler, reviews the recent literature on Gibbs sampling when 
complicated full-conditional pdfs are involved, and points out the 
connection between GS and the chain rule. A variant of the chain 
rule is also described, which is related to the novel scheme intro-
duced in the next section.

3.1. The Standard Gibbs (SG) sampler

The Gibbs sampler is perhaps the most widely used algorithm 
for inference in statistics and machine learning [9,10,12,2]. Let us 
define x¬d := [x1, . . . , xd−1, xd+1, . . . , xD ] and introduce the follow-
ing equivalent notations

2 There also exist intermediate strategies where the same subset of variables are 
jointly updated, which is often called the Blocked Gibbs Sampler.
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