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a b s t r a c t

A method for the nonparametric estimation of the Frequency Response Function (FRF) was introduced
in Hägg et al. (2011) and later called Transient Impulse Response Modeling Method (trimm). We present
here a slightly improved version of the original method and, more importantly, we thoroughly analyze
the method in terms of bias and variance errors. This analysis leads to guidelines for the choice of the
design parameters in trimm. Our theoretical expressions for the bias and variance errors are validated by
simulations which, at the same time, highlight the effect of the design parameters on the performance of
the method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Frequency Response Function (frf) estimation is a classical
problem in system identification. The identification method may
be either parametric, where the model of the system is param-
eterized with a finite number of parameters, often considerably
less than the number of data points, or non-parametric where the
number of parameters are as many as the number of data points.
In this paper we will focus on the latter. The non-parametric esti-
mates are often used in the initial stage of the identification pro-
cess to get insight into various system properties, such as system
order and noise characteristics, and can guide the user in themodel
selection in order to proceedwith amore accurate parametric esti-
mate. Non-parametric frequency response functions are also use-
ful in their own right and are used intensively inmany engineering
fields, for example in audio applications, power systems and vibra-
tion analysis.

✩ The material in this paper was partially presented at the 50th IEEE Conference
on Decision and Control and European Control Conference, December 12–15, 2011,
Orlando, FL, USA and at the 16th IFAC Symposium on System Identification, July
11–13, 2012, Brussels, Belgium. This paper was recommended for publication in
revised form by Associate Editor Antonio Vicino under the direction of Editor
Torsten Söderström.

E-mail addresses: per.hagg@ee.kth.se (P. Hägg), johan.schoukens@vub.ac.be
(J. Schoukens), michel.gevers@uclouvain.be (M. Gevers),
hakan.hjalmarsson@ee.kth.se (H. Hjalmarsson).

The classical approach is to use spectral analysis, see, e.g.,
textbooks like (Brillinger, 1981; Ljung, 1999; Pintelon&Schoukens,
2001; Stoica &Moses, 2005). The idea is to smooth the rawDiscrete
Fourier transform (dft) estimate using information from adjacent
frequencies, or, equivalently, to use weighting of the correlation
estimates of different time-lags.

All nonparametric methods suffer from transient (or leakage)
errors and noise errors. Transient errors occur when using a finite
number of data and a non-periodic input signal. This has for a
long time been amajor deterrent against the use of nonparametric
estimates of the frf in the presence of non-periodic input signals.

However, by assuming the system to be finite dimensional
the leakage error can be analyzed in detail, see McKelvey (2000)
and Pintelon, Schoukens, and Vandersteen (1997). This analysis
indicates that this error is highly structured with a smooth fre-
quency characteristic. In Schoukens, Vandersteen, Barbé, and Pin-
telon (2009) this property is explored to develop what is known
as the Local Polynomial Method (lpm), an alternative to the clas-
sical frequency smoothing. The idea is to approximate the smooth
leakage term by a Taylor series expansion and to simultaneously
estimate the coefficients of this expansion together with the fre-
quency response at one frequency at a time. The method has been
demonstrated to provide superior accuracy, as compared to tra-
ditional smoothing algorithms, on a number of problems, see for
example Pintelon, Schoukens, Vandersteen, and Barbé (2010a,b).
The method has been further developed in Gevers, Pintelon, and
Schoukens (2011) and McKelvey and Guérin (2012).
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Inspired by the lpm method, the Transient and Impulse
Response Modeling Method (trimm) was introduced in Hägg,
Hjalmarsson, andWahlberg (2011). The leakage error, or transient,
is modeled with a finite impulse response model. To be able to
simultaneously estimate both the fir parameters and the system
frequency response over the grid of dft frequencies, the dft of
the output measurements have to be recycled and used several
times. The main difference compared to lpm is that the transient
is globally parameterized as opposed to locally in lpm. The global
parameters are then estimated using the whole data record. In lpm
only the data points in a local window around each frequency are
used to estimate the transient.

Some first attempts to analyze the trimm method are given in
Gevers, Hägg, Hjalmarsson, Pintelon, and Schoukens (2012) and
Hägg and Hjalmarsson (2012). The objective of this paper is to
give a more detailed variance and bias analysis of the method
to be able to guide the user in the choice of design parameters
and experimental settings. As the general problem, with arbitrary
system, input and noise sources is hard to analyze, we will in
this paper consider a few special cases. Although the analysis
is restricted, this gives some insight into the inner workings of
the method and we will discuss the expected implications from
this analysis to more general cases. For the bias we will mainly
study the errors for second order systems with low damping. The
motivation for this choice is that most systems can be written
as sums of first and second order systems and that the part
with lowest damping introduces the largest bias error (Schoukens,
Vandersteen, Pintelon, Emedi, & Rolain, 2013). We will also give
some results for the case when the system is highly damped.

The main contribution of this paper is first to present the
idea behind, and to summarize the previous work related to the
trimm method. The second contribution is to analyze the bias and
variance errors of the estimated frequency response function with
trimm. This will allow us, in future work, to compare different
estimation methods and to give some user guidance on when and
how the different methods should be used.

The outline of the rest of the paper is as follows. In Section 2
the frequency domain input–output relation is shown that is then
used in Section 3 to derive the trimmmethod. In Section 4, bias and
variance expressions for trimm are derived. The results and their
implications in terms of the design choices of the trimm method
are discussed in Section 5. The bias and variance expressions are
then verified in Monte-Carlo simulations in Section 6 and applied
to a vibrating steel beam experimental system in Section 7. Finally,
Section 8 concludes the paper.

2. The input–output relation

Consider a linear discrete-time single-input single-output
(siso) system, G(q). The system is excited by an input signal
u(t) and the output y(t) is assumed to be disturbed by additive
measurement noise v(t). The input–output relation can then be
written as

y(t) = G(q)u(t) + v(t) (1)

where q is the forward shift operator and G(q) is a causal rational
function of q.

Equivalently, it can also be represented in state-space form as

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t) + v(t) (2)

where x(t) is the state vector and x(0) = x0.
Taking the N-point dft

Z(k) =
1

√
N

N−1
t=0

z(t)e−jωkt (3)

of the finite record of measured input and output data {u(t)} and
{y(t)}, t = 0, . . . ,N − 1 gives the following input–output dft
relation (McKelvey, 2000) for k = 0, . . . ,N − 1

Y (k) = G(ejωk)U(k) + T (ejωk) + V (k), (4)

where ωk , 2πk
N are the dft frequencies. The leakage term T is due

to the non-zero initial condition and the finite data record length.
It is important to understand that (4) is an exact relation between
the finite input and output data records (McKelvey, 2000; Pintelon
et al., 1997).

To simplify the notation we write the frequency domain
expression (4) as

Yk = GkUk + Tk + Vk, k = 0, . . . ,N − 1

where Xk = X(ejωk).
It has been shown that the transient term, evaluated at ejωk can

be expressed as McKelvey (2000):

Tk =
1

√
N
C(I − e−jωkA)−1(x0 − xN)

=
1

√
N

N−1
t=0

CAt(I − AN)−1(x0 − xN)e−jωkt (5)

where xN is the state at time t = N of the state space realization
(2). This special structure of the transient is utilized in trimm.

Although the method presented in this paper can be applied
to both random and deterministic input signals, we will assume
that both the input, u(t), and the disturbing noise, v(t), can be
described as filtered zeromeannoisewith existingmoments of any
order. The dft of the input and the noise are then asymptotically
(N → ∞) independent over the frequencies, circular complex
normally distributed (Pintelon & Schoukens, 2001). Furthermore
we assume that the system operates in open loop and thus u(t) is
independent of v(t).

3. The TRIMMmethod

The objective is to estimate the Frequency Response Function
G(ejωk) for the whole frequency grid, k = 0, . . . ,N −1. To perform
this estimation we utilize the exact relations (4) and also identify
the transient term, T . However, since there are only N/2 complex
equations, it is impossible to directly estimate the N complex
unknown parameters {Gk, Tk, k = 0, . . . ,N−1}. To generatemore
equationswe approximateGk and Tk in a localwindowof size 2L+1
around each frequency ωk.

To relate the frequency response at frequency ωk with the
frequency response at the neighboring frequencies ωk+r , r =

−L, . . . , Lwe write

Yk+r = Gk+rUk+r + Tk+r + Vk+r

= GkUk+r + [Gk+r − Gk]Uk+r + Tk+r + Vk+r . (6)

Using the definition ofGk we can nowexpress the differenceGk+r−

Gk in (6) as

Gk+r − Gk =

∞
t=1

g(t)

e−jωk+r t − e−jωkt


=

N−1
t=1

∞
p=0

g(t + pN)

e−jωk+r t − e−jωkt


,

N−1
t=1

g̃(t)

e−jωk+r t − e−jωkt


(7)

where g(t) , CAt−1B is the impulse response of the system (2) and
g̃(t) =


∞

p=0 g(t + pN).
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