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a b s t r a c t

Awide range ofmulti-agent coordinationproblems including reference tracking anddisturbance rejection
requirements can be formulated as distributed output regulation problem. The general framework
captures typical tasks such as output synchronization, leader-following, formation keeping, and many
more. We present a distributed regulator for groups of identical and non-identical linear agents subject
to global external signals affecting all agents as well as local external signals affecting individual agents.
Both signal types comprise references and disturbances. Themain contribution is a novel coupling among
the agents based on their transient state components, or estimates thereof in the output feedback case. The
transient synchronization improves the cooperative behavior in transient phases and guarantees a desired
decay rate of the synchronization error, which leads to a cooperative reaction on local disturbances acting
on individual agents.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In a variety of modern man-made systems, it is desirable to
synthesize a cooperative behavior among individual dynamical
agents, similar to bird flocks and fish schools observed in nature.
Examples include multi-vehicle coordination and formation flight
problems, robot cooperation in production lines, power balancing
in micro-grids, and many more. Of particular interest are
distributed control laws which require only local information
exchange between neighboring subsystems and no centralized
data collection or processing entity, which provides scalable,
flexible, and robust algorithms. A fundamental cooperative control
problem is the consensus or synchronization problem for groups of
linear dynamical agents. It has been studied extensively over the
past decade, starting from single-integrator agents (Olfati-Saber
& Murray, 2004; Ren & Beard, 2005), to double-integrator agents
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(Ren & Atkins, 2007), identical linear agents (Fax & Murray, 2004;
Li, Duan, Chen, & Huang, 2010; Scardovi & Sepulchre, 2009; Tuna,
2008; Wieland, Kim, & Allgöwer, 2011), and non-identical linear
agents (Grip, Yang, Saberi, & Stoorvogel, 2012; Kim, Shim, & Seo,
2011; Lunze, 2012; Wieland, Sepulchre, & Allgöwer, 2011).

From a practical point of view, it is desirable to influence the
behavior of the group via external reference signals. A solution
to this problem is the leader–follower setup (Hong, Hu, & Gao,
2006; Li et al., 2010; Ni & Cheng, 2010; Zhang, Lewis, & Das,
2011). The idea is to select a particular agent as leader for the
group or introduce a virtual leader and design the distributed
control law such that all agents synchronize to this leader.
Moreover, it is important to consider external disturbances acting
on the multi-agent system, to analyze the performance of the
closed-loop system, and to incorporate disturbance rejection or
attenuation requirements in the design procedure. Rejection of
constant disturbances is addressed in Andreasson, Dimarogonas,
Sandberg, and Johansson (2014), Seyboth and Allgöwer (2015)
and Yucelen and Egerstedt (2012). In order to tackle both
reference and disturbance signals simultaneously, it was proposed
in Huang (2011) and Xiang, Wei, and Li (2009) to formulate
multi-agent coordination problems with external reference and
disturbance signals as a synchronized output regulation problem
and utilize the classical output regulation theory, cf., Huang (2004),
Knobloch, Isidori, and Flockerzi (1993) andTrentelman, Stoorvogel,
and Hautus (2001). The problem setup in Huang (2011) and
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Xiang et al. (2009) consists of an autonomous exosystem and
a group of identical linear agents, which are affected by the
generalized disturbance signal generated by the exosystem, and
a regulation error for each agent which shall converge to zero.
The group objective for the multi-agent system is formulated
in terms of a common reference signal for all agents and local
regulation errors for each agent with respect to the common
reference. Cooperation is necessary since not all agents have access
to the external signal. By assumption, the group is divided into
a group of informed agents which are able to reconstruct the
external signal, and uninformed agents which are dependent on
information exchange with informed agents in order to solve
their regulation task. The cooperative output regulation problem
generalizes existing solutions of the leader–follower problem
(Hong, Wang, & Jiang, 2013). Su and Huang (2012a,b) extend
the results of Huang (2011), Xiang et al. (2009) and present a
solution to the cooperative output regulation problem with non-
identical agents based on state feedback and output feedback,
respectively. Each agent is described by a generalized plant in
which all matrices may be different for different agents. The
solution proposed in Su and Huang (2012b) consists of three
components: local feedback laws which are constructed based
on the classical output regulation theory for each agent; local
observers for the state of each agent; and a distributed observer
for the generalized disturbance. Besides the distributed observer,
this control strategy is decentralized. There are no couplings based
on the agent states or outputs and it is inherent in the controller
structure that local disturbances are rejected by the affected agent
only and no other agent recognizes such a disturbance. This causes
the limitation that the group is not able to react in a cooperative
manner on local disturbances. In applications such as formation
flight and vehicle platooning, keeping a desired formation typically
has a higher priority than precisely following a given path with
the formation center. A vehicle in a platoon is expected to slow
down or accelerate in order to avoid collisions with its follower or
predecessorwhen any of those experiences a disturbance. This fact
is also highlighted in Bartels andWerner (2014) and motivates the
work in the present paper.

In the present paper, we distinguish between global and local
generalized disturbances affecting all or only individual agents in
the group, respectively, and present a distributed regulator taking
this structure into account. The main contribution is an extension
of the distributed regulator with suitable couplings among the
agents in order to enable a cooperative reaction of the group
on local external disturbances. These couplings allow to impose
a desired decay rate on the synchronization error. It is shown
that the transient state components of the agents are well suited
for this purpose. A recent design method for the coupling gain
allows to impose performance specifications such as a minimum
decay rate of the synchronization error of the group. Moreover,
in a preliminary step, we formulate the cooperative control
problem as a single centralized output regulation problem. The
solvability conditions for the centralized problem and its particular
structure yield necessary and sufficient solvability conditions for
the distributed regulation problem.

Outline: Section 2 presents some background and the dis-
tributed and centralized output regulation problems. The dis-
tributed regulator for general non-identical linear agents is
presented in Section 3. In Section 4, the extension of the distributed
regulator is derived which guarantees exponential stability of the
synchronization error with a desired decay rate. The derivation is
based on the assumption that the agents have identical dynamics. A
vehicle platooning example illustrates the results. In Section 5, the
assumption of identical agent dynamics is relaxed and it is shown
how the coupling can be designed for non-identical agents with
similar dynamics. Section 6 concludes the paper.

2. Problem setup

Notation: The open left half plane, imaginary axis, and open
right half plane of C are denoted by C−, C0, and C+, respectively.
For z ∈ C, z̄ is the complex conjugate, Re(z) is the real part and
Im(z) is the imaginary part. The spectrum of A ∈ Cn×n is denoted
byσ(A) ⊂ C. diag(Mk) = diag(M1, . . . ,MN) and stack(Mk) denote
a block diagonal matrix and a vertical stack of matrices with blocks
Mk, k = 1, . . . ,N , respectively. For a set of vectors vk ∈ Rn,
k = 1, . . . ,N , v ∈ RNn denotes the stack vector v = [vT

1 · · · vT
N ]

T.
For v ∈ Rn, diag(v) is a diagonal matrix with the entries of v
on the diagonal. The identity matrix of dimension N is IN and the
vector of ones is 1. For a transfer function matrix G, ∥G∥∞ denotes
its H∞ norm. The symbol ⊗ denotes the Kronecker product. The
pairs (A, B), (A, C) are called stabilizable, detectable with decay
rate γ > 0, if the decay rate of the uncontrollable, unobservable
modes is at least γ , i.e., (A + γ In, B), (A + γ In, C) are stabilizable,
detectable, respectively. Any matrix L such that A − LC is Hurwitz
is called an observer gain matrix.

Agent models: The dynamics of the non-identical agents are
described by linear state-space models. The agent index set is
defined asN = {1, . . . ,N}, whereN is the number of agents in the
group. The dynamics of the undisturbed agents are described by
ẋk = Akxk + Bkuk, where xk(t) ∈ Rnxk is the state and uk(t) ∈ Rnuk is
the control input of agent k ∈ N . The cooperative control problem
is formulated in terms of the generalized plant

ẋk = Akxk + Bkuk + Bdg
k dg + Bdℓ

k dℓ
k (1a)

yk = Ckxk + Dkuk + Ddg
k dg + Ddℓ

k dℓ
k (1b)

ek = C e
kxk + De

kuk + Dedg
k dg + Dedℓ

k dℓ
k (1c)

where yk(t) ∈ Rnyk is the measurement output of agent k and

dg(t) ∈ Rnd
g
, dℓ

k(t) ∈ Rnd
ℓ

k are external signals specified next.
The regulation error ek(t) ∈ Rnek is defined such that asymptotic
tracking and disturbance rejection is equivalent to ek(t) → 0 as
t → ∞ for all initial conditions.

External signals: Two types of external input signals affecting
the group are considered: a global signal that affects all agents and
local signals that affect individual agents in the group. Each of these
signals represents a generalized disturbance which may consist of
reference signals and disturbances. The global signal dg(t), t ≥ 0,
is a solution of

ḋg = Sgdg , (2)

called global exosystem, where σ(Sg) ⊂ C0
∪ C+. The local signal

dℓ
k(t), t ≥ 0, is a solution of the local exosystem system

ḋℓ
k = Sℓ

kd
ℓ
k, (3)

where σ(Sℓ
k ) ⊂ C0

∪ C+, for all k ∈ N .

Remark 1. The exosystems (2), (3) could be combined into a single
large exosystem generating all disturbances acting on the group. In
that sense, the present formulation does not enlarge the problem
class compared to Su and Huang (2012b,c). The main benefit of
taking the structure of the exosystem explicitly into account is
the decomposition of the regulator equations and the reduction
of the controller dimension, as we will see later in Lemma 1 and
Theorem 3, respectively.

Information structure: All agents have communication capabili-
ties. The communication topology is described by a directed graph
G = (N , E), with node set N = {1, . . . ,N} corresponding to the
agent index set and edge set E ⊂ N ×N . A directed edge (j, k) ∈ E
corresponds to possible information flow from agent j ∈ N to
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