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a b s t r a c t

This paper investigates the distributed receding horizon control (RHC) problem of a vehicle platoon with
nonlinear dynamics and subject to system constraints, where each vehicle can communicate with its im-
mediate predecessor and follower. A novel optimization problem and detailed distributed RHC algorithm
are designed in order to keep a platoon formation, and further to ensure neighbor γ -gain stability (which
is a new notion proposed in this paper and generalizes the string stability). The sufficient conditions on
ensuring closed-loop stability and neighbor γ -gain stability are established, respectively. Finally, simula-
tion studies are provided to verify the theoretical results. It is shown that it is possible to achieve certain
control performance (i.e., γ -gain stability) and keep a formation simultaneously for the nonlinear vehicle
platoon using distributed RHC.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the distributed control of vehicle formations
has received considerable attention due to its wide applications in
automobile industry, multi-robotic systems, and aerospace explo-
rations. In the literature of distributed control, many interesting
results have been reported for solving cooperative control prob-
lems such as consensus (Li & Yan, 2015; Olfati-Saber & Murray,
2004), formation control (Lin, Francis, & Maggiore, 2005), flock-
ing (Olfati-Saber, 2006) and cooperative stabilization (Dunbar &
Murray, 2006; Li & Shi, 2014a). However, in the formation con-
trol,most of the results are only focused on vehicle formationswith
simple linear dynamics. Furthermore, few results pay attention to
the control performance during formation procedure that is likely
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a practical requirement. To advance the research in these two as-
pects, in this paper, we are interested in the distributed receding
horizon control (RHC) problem of a vehicle platoon with nonlinear
dynamics and system constraints, inwhich the vehicle platoonneeds
to be controlled to not only keep a formation, but also achieve cer-
tain control performance (i.e., neighbor γ -gain stability).

The related results in the literature are discussed as follows. The
distributed RHC problem of unconstrained continuous-time (CT)
nonlinear vehicle systems with coupled cost function is investi-
gated in Dunbar and Murray (2006), where the overall stability
is established based on the summation of the optimal cost func-
tion. The similar problem of discrete-time (DT) nonlinear systems
with coupled cost function and constraints is studied in Keviczky,
Borrelli, and Balas (2006), where the individual cost function is
proved to be qualified as the Lyapunov function for each subsys-
tem and the stability condition has been established accordingly.
Furthermore, to handle disturbances, Richards et al. propose the
robust distributed RHC strategy for the formation control problem
of DT linear agent systems with coupled constraints in Richards
and How (2007); the robust RHC problem of CT nonlinear vehicle
systems is studied in Li and Shi (2014a), Li and Shi (2014b), where
a robustness constraint is introduced to ensure closed-loop robust
stability. The distributed RHC problem of unconstrained nonlinear
vehicle platoonwith ‘‘look-ahead’’ communication fashion is stud-
ied in Dunbar and Caveney (2012), where an extra constraint is
added to ensure predecessor–follower string stability. InWang and
Ding (2014), the distributed RHC is utilized as a strategy for solving
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the formation control problem of nonholonomic vehicles, where
the collision avoidance is addressed by adding coupled constraints.

Since the formation problemmaybe converted into a consensus
problem, the distributed RHC-based consensus problem has
also received much attention. For example, in Ferrari-Trecate,
Galbusera, Marciandi, and Scattolini (2009), Ferrari-Trecate et al.
develop a distributed RHC strategy for the consensus problem of
subsystems modeled by first-order and second-order integrators
with constraints, by resorting to the optimal path-based approach,
and establish sufficient conditions to ensure consensus. Johansson
et al. propose to a RHC-based consensus algorithm for general
linear agent systems via a negotiation strategy in Johansson,
Speranzon, Johansson, and Johansson (2008), but the consensus
condition is not provided. In Li and Yan (2015), the distributed RHC
for consensus problemof general linear systems is investigated and
a necessary and sufficient condition is presented.

Although much progress has been made in the distributed RHC
problem for vehicle platoons, most of them are only focused on
the stability issue (such as stability for consensus and formation
stability), but ignore the control performance for the vehicle
platoon, with few exceptions in Dunbar and Caveney (2012),Wang
and Ding (2014). Thus, the distributed RHC for simultaneously
ensuring closed-loop stability and achieving control performance
is largely scarce. In addition, the system constraint is also a
widely ignored practical issue in most of the results on RHC-based
formation control.

In this paper, we study the distributed RHC problem of a
CT nonlinear vehicle platoon by considering the state and input
constraints, where each vehicle can exchange information with
its neighbors. We aim at designing a distributed RHC strategy to
keep a rigid formation of the vehicle platoon (i.e., closed-loop
stability), and achieve γ -gain stability (i.e., control performance)
simultaneously. Intuitively speaking, the concept of γ -gain
stability is to ensure themaximumchanges of each vehicle’s and its
neighbors’ state satisfy certain relationwith a given gain γ , and the
detailed definitions are given below in Section 2. With the γ -gain
stability, each vehicle will change cooperatively with its neighbors
during formation procedure. A significantly different initial version
has been submitted to Li, Shi, and Yan (submitted for publication).
The main contributions of this paper are as follows:

• A novel distributed RHC algorithm is proposed for the nonlinear
vehicle platoon with constraints and heterogeneous dynamics,
in which a new cost function is developed for keeping vehicle
formation, and a gain stability constraint is designed to ensure
neighbor γ -gain stability. The stability conditions on how to
design the cost function and terminal constraints of the overall
vehicle platoon are established.

• Three types of control performance indices (i.e., the predeces-
sor–follower, the follower–predecessor and neighbor γ -gain
stability) of the overall vehicle platoon have been proposed. The
sufficient conditions under which the vehicle platoon are the
predecessor–follower, the follower–predecessor, and neighbor
γ -gain stable are established, respectively.

In comparison with the work in Dunbar and Caveney (2012), this
paper extends it in two aspects: (1)we generalize thework in Dun-
bar and Caveney (2012) from the case where subsystems are free
of system constraints to amore general casewhere subsystems are
subject to state and input constraints; (2) we extend the concept
of predecessor–follower string stability in Dunbar and Caveney
(2012) to the concept of neighbor γ -gain stability, design a novel
distributed RHC algorithm and completely re-establish sufficient
conditions to ensure the neighbor γ -gain stability and show the
improvement over the predecessor–follower string stability in the
simulation. In addition, we consider bi-directional communication
networks instead of the one-directional networks in Dunbar and
Caveney (2012).

Notation: Rn denotes the n-dimensional Euclidean space and Rn×m

is the set of n×m real matrices. A symmetric and positive definite
(positive semi-definite) matrix P is written as P > 0 (P > 0).
For a given vector x ∈ Rn and a matrix P > 0, we use ∥x∥
and ∥x∥P =

√
xTPx to denote its Euclidean norm and P-weight

norm. Given a matrix P , its maximum and minimum eigenvalues
are denoted by λ̄(P) and λ(P), respectively.

2. Problem statement and modeling

Consider a vehicle platoon consisting of N vehicles moving in
a one-dimensional space, in which the leader vehicle is denoted
by p1 and the last follower is denoted by pN . Given a vehicle pi, its
immediate follower is denoted by pi+1, where i = 1, . . . ,N−1, and
its immediate leader (i.e., predecessor) is denoted by pi−1, where
i = 2, . . . ,N . In such a platoon, each vehicle pi, i ∈ {2, . . . ,N −

1}, can receive information from its immediate follower pi+1 and
immediate leader pi, except the leader and the last follower. The
leader vehicle p1 can only get information from p2 and the last
follower pN can only receive information from pN−1.

The leader vehicle needs to track a signal y(t) with a constant
speed v and all the followers need to follow its immediate leader
keeping a distant d > 0. The position of each vehicle pi is denoted
by zi(t), and its velocity is denoted by żi(t). Define the relative
position error and relative velocity error as ei(t) = zi(t)+(i−1)d−
y(t), and vi(t) = żi(t)−v, where i ∈ {1, . . . ,N}. Here, it is assumed
that each vehicle knows v via initialization and can obtain zi(t) by
absolute position sensors, e.g. GPS. Define xi(t) = [ei(t), vi(t)]T as
the state vector.

For each vehicle pi, the dynamics can be modeled as

ẋi(t) = fi(xi(t), ui(t)), (1)

with constraints xi(t) ∈ Xi, ui(t) ∈ Ui, where Xi ⊆ R2 and
Ui ⊆ R are compact sets and contain the origin as their interior
point.

Definition 1 (Predecessor–follower and Follower–predecessor γ -
gain Stability). For the vehicle platoon followed by subsystems
described by (1), given a gain bound 0 < γ < ∞, if there exist
constants γi ∈ (0, γ ] such that the closed-loop trajectories satisfy
supt>0 ∥xi(t)∥ 6 γi supt>0 ∥xi−1(t)∥, for all i = 2, . . . ,N , then the
vehicle platoon is said to be predecessor–follower γ -gain stable; if
supt>0 ∥xi−1(t)∥ 6 γi supt>0 ∥xi(t)∥, for all i = 2, . . . ,N , then the
vehicle platoon is said to be follower–predecessor γ -gain stable.

Remark 1. In Definition 1, if γ ∈ (0, 1), then the pre-
decessor–follower γ -gain stability reduces to the predeces-
sor–follower string stability stated in Dunbar and Caveney (2012).
However, the follower–predecessor γ -gain stability and the
predecessor–follower γ -gain stability cannot be satisfied simul-
taneously for γ ∈ (0, 1) in the vehicle platoon with bidirec-
tional communication. For example, if there are two vehicles
and the predecessor–follower γ -gain stability is satisfied with
γ2 ∈ (0, 1), i.e., supt>0 ∥x2(t)∥ 6 γ2 supt>0 ∥x1(t)∥, then one has
supt>0 ∥x1(t)∥ > 1

γ2
supt>0 ∥x2(t)∥ > supt>0 ∥x2(t)∥, implying

that γ for the follower–predecessor γ -gain stability is greater than
1. As a result, we generalize the definition of predecessor–follower
string stability in Dunbar and Caveney (2012) to Definition 1 with-
out requiring γ ∈ (0, 1).

Definition 2 (Neighbor γ -gain Stability). For the vehicle platoon
with subsystems described by (1), given a gain bound 0 < γ < ∞,
if there exist constants γi ∈ (0, γ ], such that the closed-
loop trajectories satisfy max{supt>0 ∥xi+1(t)∥, supt>0 ∥xi−1(t)∥} 6
γi supt>0 ∥xi(t)∥, for all i = 1, . . . ,N , where xi(t) = 0 if i < 0 or
i > N , then the vehicle platoon is said to be neighbor γ -gain stable.
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