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a b s t r a c t

In this paper, the Euler’s discretization of the second order sliding mode control systemwith the twisting
algorithm is studied. It shows that, for all values of discretization steps, initial conditions and allowable
parameter setting, the system trajectories are always bounded. It also shows that for the uncertain
systems, under amild condition, the system trajectories are also bounded. Further, the periodic behaviors
and limit cycles of the system trajectories are explored with conditions for the existence of periodic
orbits formulated. Extensive simulation examples are given to show typical trajectories, and comparison
between the first order and second order sliding mode control systems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The second order sliding mode (SOSM) algorithms have been
shown to be a very effective tool for chattering attenuation and
accuracy improvement (Fridman, 2012; Levant, 1993; Shustin,
Fridman, Fridman, & Castaños, 2008). The twisting algorithm
based sliding mode control (SMC) system (for short, we call it
the twisting system) is one of the simplest and most popular
algorithms belonging to the considered class of SOSM. The twisting
system and its global finite-time stability were introduced and
proven in Levant (1993) for the first time. Since then the twisting
system has been widely studied and applied (Polyakov & Poznyak,
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2009; Shtessel, Edwards, Fridman, & Levant, 2013). Since the fast
developments of digital microprocessor based control technology,
extensive research has been done in the last few decades on
the discrete-time SOSM systems. The accuracies of higher-order
sliding modes under the one step Euler integration method with
variable sampling steps were calculated in Levant (2011). A new
discrete time super-twisting-like SOSM algorithm was proposed
in Salgado, Kamal, Chairez, Bandyopadhyay, and Fridman (2011).
However, there has been little work on study of discretization
effect on the continuous time SOSM systems apart from the early
work in Yan, Yu, and Sun (2014), which showed that Euler’s
discretization of the twisting system can lead to irregular periodic
behaviors. The open questions that need to be addressed are the
stability conditions, sensitivity to initial conditions, existence of
periodicity in system orbits, etc.

In this paper, we will first study the stability issue of SOSM
under Euler’s discretization. We will show that for all values of
discretization steps and initial conditions the system orbits are
always bounded. We will also show that under a mild condition,
the trajectories of the uncertain system are also bounded.
Furthermore, we will demonstrate that, similar to the results in
the discretized equivalent-control based SMC systems (Galias &Yu,
2007; Yu,Wang, & Li, 2012) and the SOSM systemswith time delay
(Levaggi & Punta, 2006; Shustin, Fridman, & Fridman, 2003), the
discretization of the SOSM systems can also induce periodic orbits
and limit cycles around the system equilibrium.

http://dx.doi.org/10.1016/j.automatica.2016.01.051
0005-1098/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2016.01.051
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2016.01.051&domain=pdf
mailto:yy_spring@163.com
mailto:galias@agh.edu.pl
mailto:x.yu@rmit.edu.au
mailto:cysun@seu.edu.cn
http://dx.doi.org/10.1016/j.automatica.2016.01.051


204 Y. Yan et al. / Automatica 68 (2016) 203–208

This paper is organized as follows. Section 2 presents the
problem statement. In Section 3, bounds of the steady states under
both the certain and uncertain systems are derived, and periodicity
conditions are explored. In Section 4, simulation results are shown
to demonstrate the effectiveness of theoretical results, and some
comparison between the first order and second order SMC systems
is given.

2. Twisting algorithm based sliding mode control strategy

Consider the twisting system of the form

ẋ1 = x2, (1a)
ẋ2 = −M1sgn(x1) − M2sgn(x2), (1b)

where x ∈ R2 is a state vector, M1 > M2 > 0, sgn(y) = +1 for
y ≥ 0, and sgn(y) = −1 for y < 0. The system (1) is homoge-
neous (invariant) with respect to the transformation (t, x1, x2) →

(kt, k2x1, kx2) and that is the so-called 2-sliding homogeneity
(Levant, 2011). Since the structure of the plant (1) is intentionally
changed by the signum functions of both x1 and x2, the twisting
system cannot have amonotonic behavior. The trajectory switches
into a new parabolic motion every time it intersects the switching
lines x1 = 0 and x2 = 0. As a result, the trajectory spirally con-
verges to the origin and the SOSM emerges if a trajectory reaches
the origin.

The uncertain twisting system is defined as

ẋ1 = x2, (2a)
ẋ2 = −g(t, x)(M1sgn(x1) + M2sgn(x2)) + f (t, x), (2b)

where the smooth functions f , g are unknown and satisfy the
conditions 0 < Km ≤ g ≤ KM , |f | ≤ C . The reaching time estimate
of (2) was found in Polyakov and Poznyak (2009). The uncertain
system can be presented as a differential inclusion ẋ1 = x2, ẋ2 ∈

−[Km, KM ](M1sgn(x1) + M2sgn(x2)) + [−C, C].
In the next section, we first analyze discretization effects on

(1) as it is the fundamental form of SOSM, and then we study
discretization effects on the uncertain system (2).

3. Analysis of the discretized system

The Euler’s discretization of (1) with the time step h > 0
generates the following discrete-time system:

x(k+1)
1 = x(k)

1 + hx(k)
2 , (3a)

x(k+1)
2 = x(k)

2 − hM1s
(k)
1 − hM2s

(k)
2 (3b)

where s(k)i = sgn(x(k)
i ) for i = 1, 2. Let us denote α = M1 + M2,

β = M1 − M2 > 0 and γ = α/β > 1.
According to the signs of x1 and x2, we divide the phase plane

into four regions: Q0 = {(x1, x2) : x1 ≥ 0, x2 ≥ 0}, Q1 =

{(x1, x2) : x1 ≥ 0, x2 < 0}, Q2 = {(x1, x2) : x1 < 0, x2 < 0},
and Q3 = {(x1, x2) : x1 < 0, x2 ≥ 0}. Observe that the regions Qk
are not symmetric with respect to the origin due to the fact that
signum functions are asymmetric.

To get a better understanding of a relationship between
dynamical behaviors and system parameters let us redefine the
system so that it depends on a single parameter. By using the
property of 2-sliding homogeneity (Levant, 2011)we introduce the
linear change of variables z1 = x1/(h2β), z2 = x2/(hβ). In these
variables the dynamical system (3) has the form:

z(k+1)
1 = z(k)

1 + z(k)
2 , z(k+1)

2 = z(k)
2 − g(z(k)), (4)

where g(z) = δj for z ∈ Qj, with δ0 = γ , δ1 = 1, δ2 = −γ , and
δ3 = −1.

The following lemma states that trajectories of (4) turn around
the origin in a clockwise direction visiting region Q(p+1) mod 4
immediately after leaving region Qp.

Lemma 1. If z(i)
∈ Qp then there exists k such that z(i+k)

∈

Q(p+1) mod 4 and z(i+j)
∈ Qp for 0 ≤ j < k. Moreover, in each region

Qp trajectories are monotonic in both z1 and z2.

Proof. From (4) it follows that as long as z ∈ Q0 the variable z1
does not decrease and z2 decreases by γ . It is clear that after a finite
number of iterations the trajectory started at z(i)

∈ Q0 leaves Q0
and enters Q1. Similarly, for any initial point z ∈ Q1, formulae (4)
indicate that both z1 and z2 decrease monotonically. The trajectory
leaves Q1 and enters Q2 after a finite number of iterations. Proof for
other cases is analogous. �

3.1. Bounds for steady states; stability analysis

In this section, we fully explore the stability issue, which is
the most important aspect to study in control systems. First, we
formulate three technical lemmas which are necessary to prove
the main stability result which is formulated as Theorem 1. Let us
assume that for the iterations z(−1) and z(0) there is a switching
in the variable z1, i.e. sgn


z(−1)
1


≠ sgn


z(0)
1


. From Lemma 1 it

follows that there are two possibilities: (a) z(−1)
∈ Q3, z(0)

∈ Q0,
and (b) z(−1)

∈ Q1, z(0)
∈ Q2.

Let us define P(z(0)) = z(n), where n is such that there is a
switching in the variable z1 from z(n−1) to z(n) and there is no such
switching for 0 ≤ k < n. The map P is a discrete version of the
return map defined for the continuous system by the line z1 = 0.
However, note that the map P is two-dimensional whereas the
return map for a continuous time system is of dimension 1.

Below, we derive a formula for P and we show that if z(0)
2 is

sufficiently large then
z(n)

2

 <
z(0)

2

. We restrict formulation and
proof for the case z(0)

∈ Q0. For the case z(0)
∈ Q2 results are

symmetric and proofs are analogous.

Lemma 2. Let us assume that z(−1)
∈ Q3 and z(0)

∈ Q0. Let n be
the smallest positive integer such that z(n−1)

∈ Q1 and z(n)
∈ Q2, i.e.

z(n)
= P


z(0)


. Then

z(n)
1 = z(0)

1 + n0z
(0)
2 − 0.5γ n0(n0 − 1)

+ n1(z
(0)
2 − γ n0) − 0.5n1(n1 − 1), (5a)

z(n)
2 = z(0)

2 − γ n0 − n1, (5b)

where n0 and n1 are the smallest integer numbers satisfying condi-
tions: n0 > γ −1z(0)

2 , n1 > −b+
√
b2 − 2c with b = γ n0−0.5−z(0)

2 ,
c = 0.5γ n0(n0 − 1) − z(0)

1 − n0z
(0)
2 and n = n0 + n1.

Proof. Let us denote by n0 the number of iterations the trajectory
initiated in z(0) stays in Q0. From (4), the formula for the n0th
iteration reads

z(n0)
1 = z(0)

1 + n0z
(0)
2 − 0.5γ n0(n0 − 1), (6)

z(n0)
2 = z(0)

2 − n0γ . (7)

Since z(n0−1)
∈ Q0 and z(n0) ∈ Q1, we have z(n0−1)

2 = z(0)
2 − (n0 −

1)γ ≥ 0 and z(n0)
2 = z(0)

2 − n0γ < 0 and hence n0 satisfies the
condition

n0 ∈


γ −1z(0)

2 , γ −1z(0)
2 + 1


. (8)

Let n1 be the number of iterations the trajectory initiated in
z(n0) stays in Q1. It follows that z(n0+n1)

1 = z(n0)
1 + n1z

(n0)
2 −

0.5n1(n1 − 1), z(n0+n1)
2 = z(n0)

2 − n1. Since z(n0+n1)
1 < 0 and

z(n0+n1−1)
1 ≥ 0 it follows that n1 is the smallest positive integer
such that z(n0)

1 + n1z
(n0)
2 − 0.5n1(n1 − 1) < 0. Substituting z(n0)
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