
Digital Signal Processing 25 (2014) 275–279

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Recursive sliding discrete Fourier transform with oversampled data

A. van der Byl ∗, M.R. Inggs

Department of Electrical Engineering, University of Cape Town, Rondebosch 7701, South Africa

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 17 October 2013

Keywords:
Discrete Fourier transform
Recursive discrete Fourier transform
Sliding discrete Fourier transform
Running Fourier transform
Spectral updating

The Discrete Fourier Transform (DFT) has played a fundamental role for signal analysis. A common
application is, for example, an FFT to compute a spectral decomposition, in a block by block fashion.
However, using a recursive, discrete, Fourier transform technique enables sample-by-sample updating,
which, in turn, allows for the computation of a fine time–frequency resolution. An existing spectral
output is updated in a sample-by-sample fashion using a combination of the Fourier time shift property
and the difference between the most recent input sample and outgoing sample when using a window
of finite length. To maintain sampling-to-processing synchronisation, a sampling constraint is enforced
on the front–end hardware, as the processing latency per input sample will determine the maximum
sampling rate. This work takes the recursive approach one step further, and enables the processing of
multiple samples acquired through oversampling, to update the spectral output. This work shows that it
is possible to compute a fine-grained spectral decomposition while increasing usable signal bandwidths
through higher sampling rates. Results show that processing overhead increases sub-linearly, with signal
bandwidth improvement factors of up to 6.7× when processing 8 samples per iteration.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The Discrete Fourier Transform (DFT) has played a fundamental
role for signal analysis. Traditionally, samples are acquired and pro-
cessed in a block-processing fashion, where the number of samples
required per spectral update is a function of the desired spectral
resolution. The result is a delayed output with the time resolution
determined by the block capture and processing rate.

To improve time and frequency resolution, we need to either
capture and process the block data at a higher rate, or, alterna-
tively, utilise recursive Fourier transform methods [1–4]. Adopting
Recursive Sliding discrete Fourier Transform techniques enables
sample-by-sample updating with the flexibility of allowing the
computation of finer time–frequency resolution. The sample-by-
sample updating uses the Fourier time shift property to update
an existing spectral output using the most recent input sample.
To maintain sampling-to-processing synchronisation, a sampling
constraint is enforced on the front–end hardware. The processing
latency per input sample will determine the maximum sampling
rate permitted to allow an updated output in a single sample pe-
riod [5].

This work takes this technique one step further, permitting
multiple samples gained through sampling rates higher than those
permitted for single-input synchronisation, however still achieving

* Corresponding author.
E-mail addresses: a.vanderbyl@uct.ac.za (A. van der Byl), Michael.Inggs@uct.ac.za

(M.R. Inggs).

synchronous processing (albeit with a marginal penalty). This in
turn shows that it is possible to increase the sampling rate with
the aim to increase usable signal bandwidths, and still achieve a
fine time–frequency decomposition. Section 2 discusses the Recur-
sive DFT and highlights previous work in the field including error
correction for finite-bit arithmetic. Section 3 discusses the use of
multiple samples for spectral updating, and discusses the costs and
benefits of using higher sampling rates.

2. Recursive sliding discrete Fourier transform

The method employed in this study for DFT computation is the
Recursive DFT (RDFT), where the RDFT is based on the principle of
updating a current output F [u] as new data is added to the input
sequence. The addition of a new data point does not imply that the
input sequence has to grow in size (from size N to N + p, where
p is one for a single new input to the sequence), but rather im-
poses the constraint that a window function of size N is required,
which shifts to include the new sample (N + p), and removes the
outgoing sample (N + p − N = p).

If the output is known a priori, an update can be computed
by utilising the Fourier shift theorem and computing a DFT on
the new data that has been added, while removing the influ-
ence the outgoing sample had on the output (for a window of
size N). The computational cost for the recursive DFT technique
is far lower than the FFT (O (n log2 n)) [1,6], and is shown to im-
prove by log2 n [2].

The recursive technique is based on the work of Sherlock [2]
and Kamei [7] and computes an updated F [u] by removing the

1051-2004/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.dsp.2013.10.008

http://dx.doi.org/10.1016/j.dsp.2013.10.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:a.vanderbyl@uct.ac.za
mailto:Michael.Inggs@uct.ac.za
http://dx.doi.org/10.1016/j.dsp.2013.10.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2013.10.008&domain=pdf

276 A. van der Byl, M.R. Inggs / Digital Signal Processing 25 (2014) 275–279

contribution of the outgoing sample and adding the contribution
of the incoming sample using N length window [1,3,8].

Let:

fout = f [0] be the outgoing sample (1)

f in = f [N] be the incoming sample (2)

The new output can be computed using:

Fnew[u] =
[

Fcurrent[u] + f in − fout

N

]
W u

N (3)

where the complex exponential is defined in a more compact
form:

exp

[
j
2πu

N

]
= W u

N (4)

Using this formula, an updated output can be computed for
each DFT point based on the difference between the incoming and
outgoing samples. A further advantage of this technique is each
DFT point can compute an update independently (select frequen-
cies of interest can be computed if desired), and only minimal
data (new sample) needs to be transferred to the processing el-
ements used for each DFT point. An FFT could be performed prior
to using the recursive DFT (if block data available), or given a data
sequence f [n], the output is already known at time t = 0 (F [u] = 0
∀u). Prior to any data entering the system, it can be assumed that
the resulting output F [u] is zero, and therefore can be used as
the initial state for the recursive DFT. At the point where t = N ,
the resulting output matches the DFT output F [u] for window of
length N . Further samples can now be added and the resulting up-
dated output computed. If the recursive DFT were implemented
sequentially, the cost would be in the order of O (N2), however if
concurrency were exploited by using many smaller processing ele-
ments, the cost reduces to O (N), for computing a DFT of length N ,
if N processing elements are used [9].

3. Multi-sample updating

The work discussed in Section 2 only considers a single sample
input per iteration (real or complex) based on a sampling rate with
period Ts (and defined by the minimal processing time required to
compute an update based on a single new sample). Processing of
data assumes that the period (Ts) between input samples matches
the processing latency of the underlying system computing the up-
date to ensure no loss of information.

It would be beneficial to explore the possibility to capture mul-
tiple data samples at a scaled sampling rate (Ts

k) within the pro-
cessing time, and present an updated spectra based not on one
sample, but rather on k samples, where k represents a sampling
rate scaling factor (k ∈ Z). Eq. (3) expresses a single sample based
update in terms of the Fourier time shift property and the cur-
rent DFT output vector Fcurrent[u] for point u. If a higher sampling
rate were used, instead of fout and f in representing a single sam-
ple, they would represent multiple samples acquired during the
processing latency inherent in computing Eq. (3). The total sam-
ple pairs represented by fout and f in are stipulated by the value of
k, and are processed in the same manner, except for the value of
the complex exponential (which is determined as a function of the
time shift).

Computing an update using two sets of samples (k = 2) in-
volves shifting in two new samples (f in1 and f in2), and shifting
out two samples (fout1 and fout2) (required to maintain a constant
window length). The difference between the incoming and outgo-
ing sample pairs requires multiplication by W (s+1)u

N where s = 0,1
(s ∈ Z), respectively, followed by summation. s will take on two

values in this example, as two samples are shifted in and out, and
each difference pair requires multiplication by a different phase.
Re-writing Eq. (3) for any k:

Fnew[u] = [
Fcurrent[u]]W ku

N

+
k−1∑
s=0

[
f in(k−s) − fout(k−s)

N

]
W (s+1)u

N (5)

Two key points should be noted from Eq. (5). Firstly, the exist-
ing computed spectrum is now multiplied by a complex exponen-
tial influenced by the shifting parameter k. Secondly, the incoming
and outgoing samples are handled in pairs, and multiplied by a
complex exponential determined relative to the shift the pair of
samples experienced. It should also be noted that when comput-
ing this step, the inherent parallelism can be exploited minimis-
ing the additional overhead required if processing resources per-
mit it. The computation in Eq. (5) is suitable for both finite-bit
and floating-point arithmetic, however the use of error correction
would be needed to maintain a constant error rate when imple-
menting finite-bit arithmetic. The following section details this in-
clusion.

3.1. Error correction

The recursive DFT as expressed in Eq. (3) allows for frequent
spectral updating when a single sample is added, however, com-
putational errors can accumulate if implemented with finite-bit
arithmetic. The error is produced as a result of a quantisation and
arithmetic round-off in the complex exponentials used per point,
as well as a round-off used in the storage and computation of the
DFT update. Furthermore, the error grows without bound due to
the recursive nature of the algorithm [3,10].

It is possible to model and track errors as they develop, al-
lowing on-the-fly dynamic error correction per point [11,5]. The
correction vector (Eu) for a single sample shift is expressed in
Eq. (6) for iteration l at DFT point u [5]:

Eu[l + 1] = σu Fcurrent[l] + σu

[
f in − fout

N

]
+ W u

N Eu[l] (6)

where:

σu = Ŵ u
N − W u

N (7)

and:

W u
N is the complex twiddle factor and

Ŵ u
N is the finite-bit approximation of W u

N
Fcurrent is the current DFT point output
fout, f in are the outgoing and incoming samples

Modifying Eq. (6) to handle multiple input sample pairs pro-
duces:

Eu[l + 1] = σku Fcurrent[l] +
k−1∑
s=0

σ(s+1)u

[
f in(k−s) − fout(k−s)

N

]

+ W ku
N Eu[l] (8)

where:

σku = Ŵ ku
N − W ku

N (9)

and

σ(s+1)u = Ŵ (s+1)u
N − W (s+1)u

N (10)

Download English Version:

https://daneshyari.com/en/article/6952196

Download Persian Version:

https://daneshyari.com/article/6952196

Daneshyari.com

https://daneshyari.com/en/article/6952196
https://daneshyari.com/article/6952196
https://daneshyari.com

