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a b s t r a c t

This paper investigates the robust control invariance of Boolean control networks (BCNs) via the semi-
tensor product ofmatrices. Firstly, based on an algebraic state space representation of BCNs, twonecessary
and sufficient conditions are presented to check whether or not a given set is a robust control invariant
set under a given state feedback controller. Secondly, by defining a series of suitable sets, all possible
state feedback gain matrices under which a given set is a robust control invariant set are characterized.
An illustrative example is presented to demonstrate the obtained new results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As an effective model for the study of genetic regulatory net-
works (GRNs), Boolean networks have attracted a lot of attentions
from scholars and many excellent results have been established
over the past few decades (Akutsu, Hayashida, Ching, & Ng, 2007;
Chaves, 2009; Kauffman, 1969; Pal, Datta, Bittner, & Dougherty,
2006; Zhao, Kim, & Filippone, 2013). In a Boolean network, each
gene is represented by a node with two possible states, i.e. ‘‘0’’
and ‘‘1’’, where the ‘‘1’’ represents the state ‘‘on’’ corresponding
to a gene that is being transcribed and the ‘‘0’’ the state ‘‘off’’
corresponding to a gene that is not being transcribed. A directed
edge from one node to another represents the interaction between
genes, the mutual regulation of which is described by a Boolean
function.

For the purpose of manipulating Boolean networks, binary
control inputs and outputs are added to the network dynamics,
which yields Boolean control networks (BCNs). The control of
Boolean networks is one of the most important issues in systems
biology because it is crucial to the treatment of some diseases
like cancer (Srihari, Raman, Leong, & Ragan, 2014). Recently, an
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algebraic state space representation (ASSR) has been proposed for
the analysis and control of Boolean networks based on the semi-
tensor product of matrices (Cheng, Qi, & Li, 2011). Using the ASSR,
many control problems of Boolean networks were solved, which
include the controllability (Chen & Sun, 2014; Cheng & Qi, 2009; Li
& Sun, 2011; Liu, Chen, Lu, & Wu, 2015; Zhang & Zhang, 2013), the
stabilization (Li, Yang, & Chu, 2013), the optimal control (Chen, Li,
& Sun, 2015; Fornasini & Valcher, 2014; Laschov &Margaliot, 2011)
and the disturbance decoupling (Cheng, 2011; Yang, Li, & Chu,
2013). For other applications of the ASSR, please refer to Cheng and
Qi (2010), Lu, Zhong, Li, Ho, and Cao (2015), Suo and Sun (2015), Xu
and Hong (2013), and Zou and Zhu (2014).

It is noted that when modeling a genetic regulatory network
(GRN), disturbance inputs may need to be considered (Chen &
Wang, 2006; Cheng, 2011; Yang et al., 2013). The disturbances of
GRNs are mainly produced by biological uncertainties, experimen-
tal noises and interacting latent variables. These disturbance inputs
may prohibit the effectiveness of control strategies in keeping the
cellular states of the GRN in a desirable set. Thus, it is necessary for
us to design a suitable control strategy underwhich the set of desir-
able cellular states of the GRN is robust to the disturbance inputs,
that is, if the GRN’s trajectory reaches the set of desirable cellular
states, it will stay there forever regardless of the disturbance in-
puts. The corresponding set is called robust control invariant set.
In the last two decades, the problem of robust control invariant
sets has been well studied for both linear systems (Rakovic, Kerri-
gan, Mayne, & Kouramas, 2007; Tarraf & Bauso, 2014) and nonlin-
ear systems (Blanchini, 1999) due to its wide applications in robust
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control synthesis and analysis, robust time-optimal control and ro-
bust predictive control methods. As a suitable model of GRNs, the
study of robust control invariant sets is also important for BCNs.
However, to our best knowledge, there is no result available on ro-
bust control invariance for BCNs. It should be pointed out that al-
though Parise, Valcher, and Lygeros (2014) investigated the robust
control invariance for the differential equationmodel of GRNs, one
cannot apply the method proposed in Parise et al. (2014) to study
the robust control invariance of a BCN because of its discrete and
logical nature. Therefore, we should develop new methods for the
robust control invariance of BCNs.

In this paper, using the ASSR, we investigate the robust control
invariance of BCNs. We present two necessary and sufficient
conditions to check whether or not a given set is a robust control
invariant set under a given state feedback control. In addition, we
propose an effective procedure to characterize all possible state
feedback gain matrices under which a given set is a robust control
invariant set. Finally, we apply the obtained new results to the
regulation of the lac operon in the Escherichia coli.

The rest of this paper is organized as follows. Section 2 presents
some preliminary results on the semi-tensor product of matrices.
Section 3 gives the problem formulation. Section 4 investigates the
robust control invariance of BCNs and presents the main results of
this paper. Section 5 gives an illustrative example to support our
new results, which is followed by a brief conclusion in Section 6.

Notation. R denotes the set of real numbers. D := {1, 0}, and
Dn

:= D × · · · × D  
n

. ∆n := {δk
n : k = 1, . . . , n}, where δk

n denotes

the kth columnof the identitymatrix In. For compactness,∆ := ∆2.
An n×mmatrixM is called a logical matrix, ifM = [δ

i1
n δ

i2
n · · · δim

n ],
which is briefly expressed as M = δn[i1 i2 · · · im]. Denote the set
of n × m logical matrices by Ln×m. Given a real matrix A ∈ Rm×n,
Coli(A) denotes the ith column of A, and (A)i,j denotes the (i, j)th
element of A.

2. Preliminaries

In this section, we recall some preliminary results on the semi-
tensor product of matrices, which will be used later.

Definition 1 (Cheng et al., 2011). The semi-tensor product of two
matrices A ∈ Rm×n and B ∈ Rp×q is defined as

A n B = (A ⊗ I α
n
)(B ⊗ I α

p
), (1)

where α = lcm(n, p) is the least common multiple of n and p, and
⊗ is the Kronecker product.

Remark 1. When n = p, the semi-tensor product of matrices be-
comes the conventional matrix product. Thus, it is a generalization
of the conventionalmatrix product.We can simply call it ‘‘product’’
and omit the symbol ‘‘n’’ if no confusion arises.

Proposition 1 (Cheng et al., 2011). Let X ∈ Rp×1 be a column vector
and A ∈ Rm×n. Then

X n A = (Ip ⊗ A) n X . (2)

Using the semi-tensor product of matrices, one can convert a
Boolean function into an algebraic form. Identifying 1 ∼ δ1

2 and
0 ∼ δ2

2 , then ∆ ∼ D , where ‘‘∼’’ denotes two different forms
of the same object. In the sequel, we mostly use δ1

2 and δ2
2 to

express Boolean variables and call them the vector form of Boolean
variables. We have the following result.

Lemma 1 (Cheng et al., 2011). Let f (x1, x2, . . . , xs) : D s
→ D be

a Boolean function. Then, there exists a unique matrix Mf ∈ L2×2s ,
called the structural matrix of f , such that

f (x1, x2, . . . , xs) = Mf ns
i=1 xi, xi ∈ ∆, (3)

where ns
i=1 xi = x1 n · · · n xs.

For example, the structural matrices for Negation (¬), Conjunc-
tion (∧) and Disjunction (∨) are Mn = δ2[2 1], Mc = δ2[1 2 2 2]
and Md = δ2[1 1 1 2], respectively.

3. Problem formulation

Consider the following Boolean control network:
x1(t + 1) = f1(X(t),U(t), Ξ(t)),
x2(t + 1) = f2(X(t),U(t), Ξ(t)),
...
xn(t + 1) = fn(X(t),U(t), Ξ(t)),

(4)

where X(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Dn, U(t) = (u1(t), . . . ,
um(t)) ∈ Dm and Ξ(t) = (ξ1(t), . . . , ξq(t)) ∈ Dq are states, con-
trol inputs and disturbance inputs, respectively, and fi : Dm+n+q

→ D, i = 1, . . . , n are Boolean functions.
Now, we give the definition of a robust control invariant set of

BCNs.

Definition 2 (Robust Control Invariant Set). Consider the system
(4). A nonempty set S ⊆ Dn is said to be a robust control invariant
set, if there exists a state feedback control in the form of

u1(t) = ϕ1(x1(t), x2(t), . . . , xn(t)),
...
um(t) = ϕm(x1(t), x2(t), . . . , xn(t)),

(5)

where ϕi : Dn
→ D, i = 1, . . . ,m are Boolean functions, such

that for the closed-loop system consisting of (4) and (5), X(t) ∈ S
implies X(t + 1) ∈ S, ∀ Ξ(t) ∈ Dq.

In the following, we convert (4) and (5) into equivalent algebraic
forms via the semi-tensor product of matrices.

Using the vector form of Boolean variables and setting x(t) =

nn
i=1 xi(t), u(t) = nm

i=1 ui(t) and ξ(t) = nq
i=1 ξi(t), by Lemma 1,

one can convert (4) and (5) into

x(t + 1) = Lξ(t)u(t)x(t), (6)

and

u(t) = Kx(t), (7)

respectively, where L ∈ L2n×2m+n+q is called the state transition
matrix of (6), and K ∈ L2m×2n the state feedback gain matrix.
Moreover, the nonempty set S can be converted to a subset of ∆2n .

Given a nonempty set S =


δ
i1
2n , . . . , δ

ip
2n


⊆ ∆2n with 1 ≤ i1 <

· · · < ip ≤ 2n, we study the following two problems.

Problem 1: For a given state feedback gain matrix K ∈ L2m×2n ,
check whether or not S is a robust control invariant
set of the system (4) under the control u(t) = Kx(t).

Problem 2: Find all possible state feedback gain matrices under
which S is a robust control invariant set of the
system (4).
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