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a b s t r a c t

This paper studies zeros of networked linear systemswith time-invariant interconnection topology.While
the characterization of zeros is given for both heterogeneous and homogeneous networks, homogeneous
networks are explored in greater detail. In the current paper, for homogeneous networks with time-
invariant interconnection dynamics, it is illustrated how the zeros of each individual agent’s system
description and zeros definable from the interconnection dynamics contribute to generating zeros of
the whole network. We also demonstrate how zeros of networked systems and those of their associated
blocked versions are related.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recent developments of enabling technologies such as com-
munication systems, cheap computation equipment and sensor
platforms have given great impetus to the creation of networked
systems. Thus, this area has attracted significant attention world-
wide and researchers have studied networked systems from
different perspectives (see e.g. Olfati-Saber &Murray, 2002, Sinop-
oli, Sharp, Schenato, Schaffert, & Sastry, 2003, Tanner, Jadbabaie,
& Pappas, 2003 and Zamani & Lin, 2009). In particular, in view of
the recent chain of events (Falliere, Murchu, & Chien, 2011; Gor-
man, 2009; Rid, 2012), the issues of security and cyber threats to
the networked systems have gained growing attention. This paper
uses system theoretic approaches to deal with problems involved
with the security of networks.

Recent works have shown that control theory can be used as
an effective tool to detect and mitigate the effects of cyber attacks
on the networked systems; see for example Amin, Cárdenas,
and Sastry (2009), Cárdenas et al. (2011), Gupta, Langbort, and
Basar (2010), Mo et al. (2012), Sridhar, Hahn, and Govindarasu
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(2012), Teixeira, Shames, Sandberg, and Johansson (2012) and the
references listed therein. The authors of Teixeira et al. (2012)
have introduced the concept of zero-dynamics attacks and shown
how attackers can use knowledge of networks’ zeros to produce
control commands such that they are not detected as security
threats.1 They have further shown that zeros of networks provide
valuable information relevant to detecting cyber attacks. The
authors in Teixeira et al. (2012) were more concerned with
mitigating such attacks and did not provide a detailed discussion
about zeros of the networked systems. In addition to this, even
though various aspects of the dynamics of networked systems
have been extensively studied in the literature, see e.g. Fax and
Murray (2004), Olfati-Saber, Fax, and Murray (2007) and Ren,
Beard, and Atkins (2007), to the authors’ best knowledge, the
zeros of networked systems have not been studied in any detail
except in Zamani, Helmke, and Anderson (2013). The current paper
establishes a link between the problem of zero-dynamics attacks
and the analysis of zeros that has been recorded in Zamani et al.
(2013). Furthermore, several new results are introduced in the
current paper compared to its preliminary conference version
including the provision of proofs of certain results which were not
part of the conference version.

This paper examines the zeros of networked systems in
more depth. Our focus is on networks of finite-dimensional
linear discrete-time dynamical systems that arise through static

1 This is discussed further in the next section.
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interconnections of a finite number of such systems. Such models
arise naturally in applications of linear networked systems, e.g. for
cyclic pursuit (Marshall, Broucke, & Francis, 2004); shortening
flows in image processing (Bruckstein, Sapiro, & Shaked, 1995), or
for the discretization of partial differential equations (Brockett &
Willems, 1974).

Our ultimate goal is to analyze the zeros of networked systems
with periodic, or more generally time-varying interconnection
topology. An important tool for this analysis is blocking or lifting
technique for networks with time-invariant interconnections.
Note that blocking of linear time-invariant systems is useful if
not standard in design of controllers for linear periodic systems
as shown by Chen and Francis (1995) and Khargonekar, Poolla,
and Tannenbaum (1985). The authors of Bolzern, Colaneri, and
Scattolini (1986) and Grasselli and Longhi (1988) have examined
zeros of blocked systems obtained from blocking of time-invariant
systems. Their works have been extended in Chen, Anderson,
Deistler, and Filler (2012) and Zamani, Chen, Anderson, Deistler,
and Filler (2011). However, these earlier contributions do not take
any underlying network structure into consideration. In this paper,
we introduce some results that provide a first step in that direction.

It is worthwhile noting the blocking technique has been
used in the networked systems literature for both control and
identification purposes. For instance, the authors in Haber and
Verhaegen (2014) have exploited this technique to identify the
system parameters in a networked system via the subspace
approach. The same set of authors have employed the blocking
technique to study moving horizon estimation problem for
networked systems (Haber & Verhaegen, 2013). In Montestruque
and Antsaklis (2006) the authors have utilized the blocking
technique to provide a sufficient and necessary condition for
stability of a class of networked systems with communication
bandwidth limitation. A similar problem has been addressed in
Garcia and Antsaklis (2010) using the blocking.

The structure of this paper is as follows. First, in Section 2
we introduce state-space and higher order polynomial system
models for time-invariant networks of linear systems. A central
result used is the strict systemequivalence between these different
system representations. Moreover, we completely characterize
both finite and infinite zeros of arbitrary heterogeneous networks.
For homogeneous networks of identical SISO systemsmore explicit
results are provided in Section 3. Homogeneous networks with
a circulant coupling topology are studied as well. In Section 4,
a relation between the transfer function of the blocked system
and the transfer function of the associated unblocked system is
explained. We then relate the zeros of blocked networked systems
to those of the corresponding unblocked systems, generalizing
work in Chen et al. (2012), Zamani, Anderson, Helmke, and Chen
(2013) and Zamani et al. (2011). Finally, Section 5 provides the
concluding remarks.

2. Problem statement and preliminaries

We consider networks of N linear systems, coupled through
constant interconnection parameters. Each agent is assumed to
have the state-space representation as a linear discrete-time
system

xi(t + 1) = Aixi(t) + Bivi(t)
wi(t) = Cixi(t), i = 1, . . . ,N.

(1)

Here, Ai ∈ Rni×ni , Bi ∈ Rni×mi and Ci ∈ Rpi×ni are the associated
systemmatrices.We assume that each system is reachable and ob-
servable and that the agents are interconnected by static coupling
laws

vi(t) =

N
j=1

Lijwj(t) + Riu(t) ∈ Rmi , (2)

with Lij ∈ Rmi×pj , Ri ∈ Rmi×m and u(t) ∈ Rm denoting an external
input applied to the whole network. Further, we assume that there
is a p-dimensional interconnected output given by

y(t) =

N
i=1

Siwi(t) + Du(t), with Si ∈ Rp×pi , i = 1, . . . ,N. (3)

Define m =
N

i=1 mi, p =
N

i=1 pi, n =
N

i=1 ni and coupling ma-
trices

L = (Lij)ij ∈ Rm×p, R =

R1
...
RN

 ∈ Rm×m,

S = (S1, . . . , SN) ∈ Rp×p, D ∈ Rp×m,

as well as node matrices

A = diag(A1, . . . , AN), B = diag(B1, . . . , BN),

C = diag(C1, . . . , CN), x(t) :=

x1(t)
...

xN(t)

 ∈ Rn.
(4)

Then the closed-loop system is

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), (5)

with matrices

A := A + BLC, B := BR, C := SC . (6)

One could also start by assuming that each system (1) is defined
in terms of a restricted version of Rosenbrock-type equations
(Rosenbrock, 1970) i.e. by systems of higher order difference
equations

Ti(σ )ξi(t) = Ui(σ )vi(t)
wi(t) = Vi(σ )ξi(t).

(7)

Here σ denotes the shift operator that acts on sequences of vectors
(ξ(t))t as (σξ(t)) = ξ(t + 1). Furthermore, Ti,Ui, Vi denote
polynomial matrices of sizes Ti(z) ∈ R[z]ri×ri ,Ui(z) ∈ R[z]ri×mi

and Vi(z) ∈ R[z]pi×ri , respectively. We always assume that Ti(z) is
nonsingular, i.e. that det Ti(z) is not the zero polynomial. Moreover,
the system (7) is assumed to be strictly proper, i.e. we assume that
the associated transfer function

Gi(z) = Vi(z)Ti(z)−1Ui(z) (8)

is strictly proper. Following Fuhrmann (1977), any strictly proper
system of higher order difference equations has an associated
state-space realization (A, B, C), the so-called shift realization,
such that the polynomial matrices
zI − A −B

C 0


,


T (z) −U(z)
V (z) 0


(9)

are strict system equivalent (Fuhrmann, 1977). If the first order
representation (1) is strict system equivalent to the higher order
system (7) then of course the associated transfer functions
coincide, i.e. we have

Ci(zI − Ai)
−1Bi = Vi(z)Ti(z)−1Ui(z). (10)

Throughout this paper we assume that the first order and
higher order representations i.e. the systems (1) and (7), are
chosen to be of minimal order, respectively. This is equivalent to
the controllability and observability of the shift realizations (1)
associated with these representations (7). It is also equivalent to
the simultaneous left coprimeness of Ti(z),Ui(z) and the right
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