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a b s t r a c t

This paper considers the formation control problem for a network of point masses which are subject to
Coulomb friction. A dynamical model including the planar discontinuous friction force is presented in
the port-Hamiltonian framework. Moreover, continuous and discontinuous controllers are designed in
order to achieve a desired prescribed formation. Themain results are derived using tools from nonsmooth
Lyapunov analysis. It is shown that the continuous static feedback controller fails to achieve the exact
formation, while the discontinuous controller achieves the desired task exactly. Numerical simulations
are provided to illustrate the effectiveness of the approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperativemotion coordination ofmobile agents has attracted
increasing attention in recent years owing to its wide range of
applications from biology and social networks to sensor/robotic
networks. Distributed formation control is a cooperative control
problem which aims at achieving a desired collective behavior,
mainly forming a desired geometrical shape, for a group of agents
using local feedback laws rather than a centralized controller
(Arcak, 2007).

The dynamics of agents play an important role in the problem
of formation control. In this regard, different classes of dynamic
agents have been considered e.g. Bai, Arcak, andWen (2011), Nuño,
Ortega, Basañez, andHill (2011), Ren (2009) and van der Schaft and
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Maschke (2013). For dynamic agents, the dissipation due to friction
forces plays a key role in the stability analysis of thewhole network
e.g. Bai et al. (2011), Jafarian and De Persis (2015) and Vos, Scher-
pen, and van der Schaft (2012). In the literature, to the authors
best knowledge, only continuous friction forces have been consid-
ered for the formation control problem of networks. This paper
considers formation control of a group of agents in the presence
of Coulomb friction which is a discontinuous friction law (van de
Wouw & Leine, 2004). Coulomb friction is a quantification of the
friction force that exists between two (dry) surfaces in contactwith
each other. Coulomb friction renders the networked system non-
smooth, thereby requiring tools from nonsmooth systems for the
analysis. Nonsmooth stability theory has been already considered
in formation keeping control, e.g. in finite-time consensus algo-
rithms (Cortés, 2006), and in quantized coordination (Ceragioli, De
Persis, & Frasca, 2011; De Persis & Jayawardhana, 2012; Jafarian &
De Persis, 2013, 2015).

In this paper, the model of the network and the formation
controller design are defined in the port-Hamiltonian framework
(Duindam, Macchelli, & Stramigioli, 2009; van der Schaft & Jelt-
sema, 2014). Being an energy-based modeling framework (Ortega,
van der Schaft, Mareels, & Maschke, 2002), the port-Hamiltonian
framework enables the modeling of a physical phenomenon like
Coulomb friction in a natural way (i.e., the model provides a clear
physical interpretation). The port-Hamiltonian framework inter-
connects the various sub-systems in a power preserving manner
using the so-called power ports (Duindam et al., 2009). Moreover,
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the Hamiltonian equals the total energy stored in the system and
can be used as a Lyapunov function. In addition, one can design
controllers using energy-related elements, e.g. springs, in order to
shape the total energy of the system into a desired one. The term
virtual spring used throughout this paper refers to the application
of this concept in the control design. We build upon the recently
introduced theory of port-Hamiltonian systems on graphs (van der
Schaft & Maschke, 2013) where graph theory is used to model the
interconnection amongst agents in the network, and upon nons-
mooth formation control (Jafarian & De Persis, 2013, 2015).

We consider a network of point masses moving in R2 and
assume that each of the agents is subject to Coulomb friction. To
achieve the desired formation, we consider assigning two types of
virtual springs between the agents: continuous and discontinuous
springs. The way in which agents are interconnected by virtual
springs is modeled by an undirected connected acyclic graph.
The physical interconnection structure modeled by the graph
(van der Schaft & Maschke, 2013) is assumed to be equal to the
information exchange amongst agents (i.e., two agents exchange
(local) information if there is a virtual spring assigned in between
the agents). Theway inwhichwe define the springs fitswellwithin
the position-based formation control setting described in Arcak
(2007) and Bai et al. (2011). Compared with existing literature
(Vos et al., 2012; Vos, Scherpen, & van der Schaft, 2014) the major
difference is the presence of discontinuity in the agents dynamics
due to Coulomb friction. This discontinuity prevents continuous
springs to achieve the formation control objectives which is the
motivation behindproposing discontinuous springs for the control.
For other results about discontinuous position-based formation
control, we refer the reader to De Persis and Jayawardhana (2012)
and Jafarian and De Persis (2015).

Main contribution. We present modeling and analysis of a
network of planar heterogeneous dynamic point masses sub-
ject to Coulomb friction in the port-Hamiltonian framework. We
show that continuous virtual springs fail to achieve a desired
formation exactly. Moreover, we present a discontinuous dis-
tributed design to achieve the desired goals of the formation
control problem. Both the network and the controller are modeled
within the port-Hamiltonian framework which provides a clear
physical interpretation of the results. It is worth noting that the
use of nonsmooth analytical tools for formation keeping control in
the port-Hamiltonian framework has not been studied before. Pre-
liminary results of this work were presented in Jafarian, Vos, De
Persis, van der Schaft, and Scherpen (2014) which considers the
formation control of a group of homogeneous agents in R commu-
nicating over a star graph. In this paper, we generalize the results
to the class of tree graphs. Furthermore, we provide a rigorous non-
smooth stability analysis of the closed-loop system.

The outline of this paper is as follows. First we recall some
preliminaries on port-Hamiltonian systems, graph theory and an-
alytical tools for nonsmooth systems. Section 3 presents a port-
Hamiltonian model for the agents which are subject to Coulomb
friction in R and R2. Section 4 continues with the control design
and the closed-loop analysis for both continuous and discontinu-
ous springs. Section 5 illustrates the effectiveness of the approach
by simulation results. Finally, Section 6 concludes the paper.

Notation. For a square matrix A ∈ Rn×n, tr (A) denotes the trace
of A, which is defined as tr (A) =

n
i=1 aii. The symbol ×

m
k=1 Sk

denotes the Cartesian product S1 × S2 × · · · × Sm. The symboln
r=1 Sr denotes the union S1 ∪ S2 ∪ · · · ∪ Sn. An empty set is

denoted by ∅. Given a matrix M of real numbers, we denote by
R(M) and N (M) the range and the null space, respectively. The
symbols 1, 0 denote appropriately sized vectors or matrices of all
1 and 0 respectively. Sometimes the size of the matrix is explicitly
given (i.e., 1n is the n-dimensional vector of all 1). Ip is the p × p

identity matrix. Given twomatrices A, B, the symbol A⊗B denotes
the Kronecker product. block.diag (A1, . . . , An) denotes the block
diagonal matrix such that Ai is its ith diagonal element. For a scalar
function H : Rn

→ R, ∂H
∂x denotes the column vector of partial

derivatives of the function H(x) with respect to x = (x1, . . . , xn)T .
For vectors a, b ∈ Rn, a · b denotes their inner product. Finally,
the 2-norm and 1-norm of a ∈ Rn are denoted as ∥a∥ and ∥a∥1
respectively.

2. Preliminaries

This section presents some preliminaries on the theory of
port-Hamiltonian systems, graph theory and analytical tools for
nonsmooth systemswhich are used in the remainder of this paper.
Port-Hamiltonian systems

The port-Hamiltonian framework is energy-based modeling
framework which describes a large class of (nonlinear) multi-
domain systems (Duindam et al., 2009; van der Schaft & Jeltsema,
2014). A port-Hamiltonian system consists of energy storing
elements, energy dissipating elements and a Dirac structure which
describes how the elements are interconnected in a power-
preserving way. Furthermore, external ports are used to describe
the interaction with the external systems like the control system
and the environment.

There are several representations for port-Hamiltonian systems
(van der Schaft & Jeltsema, 2014). In this work we are dealing
with input-state-output port-Hamiltonian systems. Consider state
x ∈ Rn, skew-symmetric structure matrix J(x) = −JT (x) ∈ Rn×n,
positive semi-definite dissipation matrix R(x) = RT (x) ≥ 0 ∈

Rn×n, and letH(x) : Rn
→ Rdenote theHamiltonian of the system.

TheHamiltonianH(x) is the sumof the kinetic andpotential energy
stored in the system. The systems considered in thiswork have two
interaction ports (see Duindam et al., 2009): a control port (u, y)
and a resistive port (ur , yr). Each port has two port-variables, being
the inputs u ∈ Rm1 , ur

∈ Rm2 and outputs y ∈ Rm1 , yr ∈ Rm2 .
The product of the port-variables has the dimension of power and
equals the energy flow through the port. The port-Hamiltonian
dynamics (Duindam et al., 2009) are given by

ẋ = J(x)
∂H
∂x

(x) + g(x) u + g r(x) ur

y = gT (x)
∂H
∂x

(x)

yr = g r T (x)
∂H
∂x

(x),

(1)

with input matrices g(x) ∈ Rn×m1 , g r(x) ∈ Rn×m2 corresponding
to the control port and the resistive port respectively. The resistive
port enables us to model the discontinuous Coulomb friction (see
Section 3). A resistive element dissipates energy and hence the
resistive port-variables satisfy yr T ur

≤ 0.
Graph theory

The information exchange between agents is modeled by a
connected and undirected graph G(V, E), where node-set V
corresponds to n agents and the edge-set E ⊂ V × V corresponds
to m virtual springs. In order to use the tools of graph theory, we
assign a positive/negative label to each of the nodes connected by a
link. The labeling of the nodes can be done in an arbitrary manner,
and it does not affect the final results. Label one end of each edge in
E with a positive sign and the other end with a negative sign. The
incidence matrix B associated to G(V, E) describes which nodes
are coupled by an edge, and is defined as

biℓ =


+1 if node i is at the positive side of edge ℓ
−1 if node i is at the negative side of edge ℓ
0 otherwise.
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