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ABSTRACT

This paper considers a problem of minimax (or H*) state estimation with intermittent observations. In
this setting, the disturbance in the dynamical system and the sensor noise are controlled by adversaries,
and the estimator receives the sensor measurements only sporadically, with the availability governed
by an independent and identically distributed Bernoulli process. We cast this problem within the
framework of stochastic zero-sum dynamic games. We first obtain a corresponding stochastic minimax
state estimator (SMSE) and an associated generalized stochastic Riccati equation (GSRE) whose evolutions
depend on two parameters: one that governs the random measurement arrivals and another one that
quantifies the level of H* disturbance attenuation. We then analyze the asymptotic behavior of the
sequence generated by the GSRE in the expectation sense, and its weak convergence. Specifically, we
obtain threshold-type conditions above which the sequence generated by the GSRE can be bounded both
below and above in the expectation sense. Moreover, we show that under some conditions, the norm
of the sequence generated by the GSRE converges weakly to a unique stationary distribution. Finally,
we prove that when the disturbance attenuation parameter goes to infinity, our asymptotic results
are equivalent to the corresponding results from the literature on Kalman filtering with intermittent
observations. We provide simulations to illustrate the results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Networked control systems (NCSs) have taken center stage in
recent years due to the widespread use of wireless communication
and its applications to control systems—for example, command,
control, communication, computing, and intelligence (C4I) in
defense systems, unmanned aerial vehicles (UAVs), power and
chemical plants, and automated systems. In contrast to classical
feedback control systems, in NCSs communication networks are
used between the controller and the plant, as well as between the
sensors and the controller (Hespanha, Naghshtabrizi, & Xu, 2007).

Typical communication constraints that have been considered
in the literature are delays, limitations on data rate, and presence
of packet drops, where the latter is also referred to as data erasure
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(Hespanha et al., 2007). These three limitations are natural, be-
cause (1) delays are continually generated in communication while
encoding, decoding, transmitting, and receiving signals, (2) every
communication channel has a finite capacity under which the data
can be handled reliably, and (3) the network is always subject to
packet losses or link failures, especially in wireless communication.

In this paper, we study an optimal state estimation problem for
linear time-invariant (LTI) systems when there are packet drops
between the sensor and the estimator. The general configuration
of the problem is captured in Fig. 1. In our model, the sensor
measurements are only intermittently available to the estimator,
where the intermittency of the observations is characterized by an
independent and identically distributed (i.i.d.) Bernoulli process,
{Bk}. If sensor measurements are lost, the estimator receives
nothing. Therefore, the measurement arrivals are governed by
the underlying probability distribution of g,. Moreover, unlike
the previous work on this topic, our model considers the case
when the disturbance and the sensor noise, {w;} and {v,}, are not
necessarily stochastic processes, which are therefore treated as
being controlled by adversaries in the estimation process. Under
this setting, the optimal estimation problem is formulated under a
worst-case scenario within the framework of stochastic zero-sum
dynamic games.

To motivate this class of problems, consider a simple target esti-
mation problem in a radar system, where estimation is performed
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Fig. 1. System block diagram of minimax estimation with intermittent observa-
tions.

based on sensor signals that are reflected from the target (Li &
Jilkov, 2005). Due to a large volume of clutter and unforeseeable
weather conditions, reflected signals can be lost or delayed ran-
domly. In this case, after a certain number of consecutive mea-
surement losses, the number of false alarms and/or missing targets
increases, which results in losing the target information. Now, to
cope with this scenario, the main objective should be to achieve
stability and performance of the estimator in terms of measure-
ment losses. To be specific, we need to characterize the maximum
tolerable measurement loss rate below which the estimator is able
to track the target reliably. We should mention that this class of
problems was studied first by Nahi (1969), and has been studied
extensively in recent years as will be discussed later.

In addition to measurement packet losses, in many practical
situations, it is not realistic that statistical information of the
disturbance and the sensor noise is available, or even if they
are available, there is a mismatch between statistical and true
information on the disturbance and the sensor noise. To handle
this situation, H* estimation has been widely studied and applied
in many practical applications, which deals with estimation under
unknown arbitrary disturbance and the sensor noise controlled by
adversaries (Basar & Bernhard, 1995; Nagpal & Khargonekar, 1991;
Shaked & Theodor, 1992). There exist many applications of H*
estimation, see for example, Chen, Tsai, and Chen (2001), Labarre,
Grivel, Najim, and Christov (2007), Lee, Chen, and Chen (2006) and
Shen and Deng (1999).

The problem depicted in Fig. 1 has been studied extensively
within the Kalman filtering framework, in which case certain
statistical properties of the disturbance and the sensor noise, {wy}
and {v,}, need to be available to the estimator, as such, this can be
seen as a special case of our model (this point will be made clear
later in the paper).

Within the Kalman filtering framework, the first set of notable
results were obtained by Sinopoli et al. (2004). There, the stochastic
Kalman filter and the associated stochastic Riccati equation (or
the stochastic error covariance matrix), say Py, were obtained such
that their processes are dependent on the entire measurement
arrival information, {8}. Moreover, Sinopoli et al. (2004) showed
that there is a critical value of the measurement loss rate beyond
which the expected value of the error covariance matrix, E{P;}, is
bounded. It was also shown that this critical value is a function of
the unstable modes of the system, and can be analyzed in terms of
lower and upper bounds.

The difference between the Kalman filter in Sinopoli et al.
(2004) and the Markov jump linear estimator (MJLE) in Costa
and Guerra (2002) is that the latter is dependent only on the
current measurement arrival information . It was shown in
Sinopoli et al. (2004) that the Kalman filter in their paper is optimal
over all possible estimators, and thus provides better estimation
performance than the MJLE.

The results obtained in Sinopoli et al. (2004) were extended
in many different directions, with some related references being
Censi (2011), Epstein, Shi, Tiwari, and Murray (2008), Huang and
Dey (2007), Kar, Sinopoli, and Moura (2012), Kluge, Reif, and
Brokate (2010), Liu and Goldsmith (2004), Mo and Sinopoli (2008,
2011, 2012), Plarre and Bullo (2009) and Shi, Epstein, and Murray
(2010). Moreover, instead of E{P,}, other performance metrics, or
a correlated intermittent observation case were studied in Censi
(2011), Epstein et al. (2008), Huang and Dey (2007), Kar et al.

(2012), Mo and Sinopoli (2012) and Shi et al. (2010), to provide
other perspectives on the error covariance matrix, Py.

Although there are significant progresses on the intermittent
observation problem within the Kalman filtering framework, it
has not yet been addressed thoroughly through the worst-case or
H®® approach. Some relevant results were obtained in De Souza
and Fragoso (1997), Gao and Chen (2007), Goncalves, Fioravanti,
and Geromel (2009), Sahebsara, Chen and Shah (2008) and Wang,
Yang, Ho, and Liu (2006), where the different sets of linear matrix
inequalities were derived for the H* performance. These results,
however, are related more to the theory of MJLEs and are therefore
suboptimal, since the estimators are restricted to be time-invariant
and obtained under the current measurement arrival information
B

Taking the classes of intermittent estimation problems, as
described above, a step further, we study in this paper the problem
of minimax? state estimation with intermittent observations for
LTI systems.

By formulating the problem within the framework of stochastic
zero-sum dynamic games, we first obtain a stochastic minimax
state estimator (SMSE) and an associated generalized stochastic
Riccati equation (GSRE) that are time-varying and random, and are
dependent on the sequence of the random measurement arrival
information {fx} and the H* disturbance attenuation parameter
y.We then identify an existence condition for the SMSE in terms of
the GSRE and y. We also show that under that existence condition,
the SMSE is able to attenuate arbitrary disturbances within the
level of y. Moreover, we show that for the least disturbance
attenuation case (that is, as y — oo), the SMSE and the GSRE
converge, respectively, to the Kalman filter and its stochastic
Riccati equation {Py} in Sinopoli et al. (2004).

The second objective of this paper is to analyze the asymptotic
behavior of the SMSE. In particular, we prove boundedness of the
sequence generated by the GSRE in the expectation sense, and
also show its weak convergence. More specifically, we first show
that under the existence condition, there exist a critical value of
the measurement loss rate and a critical value for the disturbance
attenuation parameter beyond which the expected value of the
sequence generated by the GSRE can be bounded both below and
above. Second, we prove that under the existence condition, the
norm of the sequence generated by the GSRE converges weakly
to a unique stationary distribution. For both cases, we show
that when y — o0, the corresponding asymptotic results are
equivalent to that in Kar et al. (2012) and Sinopoli et al. (2004).
We also demonstrate by simulations that the SMSE outperforms
the stationary and suboptimal H* MJLE in Goncalves et al. (2009),
as did for the Kalman filtering problem in Sinopoli et al. (2004).

The structure of the paper is as follows. In Section 2, we
formulate the problem of minimax estimation with intermittent
observations. In Section 3, we obtain the SMSE and GSRE, and
characterize the existence condition. In Section 4, we analyze
the asymptotic behavior of the GSRE. In Section 5, we present
simulation results. We end the paper with the concluding remarks
of Section 6. Supporting lemmas and some useful results on
Kalman filtering with intermittent observations are provided in
Appendices.

Notation

R™ and R™*" denote, respectively, the spaces of n-dimensional
and m x n-dimensional real-valued vectors and matrices. SZ ; (resp.

2 In this paper, we will be using the qualifiers “H*” and “minimax” estimation
interchangeably (Basar & Bernhard, 1995).
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